Abstract:
A multi-layer sealing film for high seal yield is provided. In some embodiments, a substrate comprises a vent opening extending through the substrate, from an upper side of the substrate to a lower side of the substrate. The upper side of the substrate has a first pressure, and the lower side of the substrate has a second pressure different than the first pressure. The multi-layer sealing film covers and seals the vent opening to prevent the first pressure from equalizing with the second pressure through the vent opening. Further, the multi-layer sealing film comprises a pair of metal layers and a barrier layer sandwiched between metal layers. Also provided is a microelectromechanical systems (MEMS) package comprising the multilayer sealing film, and a method for manufacturing the multi-layer sealing film.
Abstract:
In an embodiment, a system includes: a circular frame comprising a first side and a second side opposite the first side, wherein the circular frame comprises an aperture formed therethrough; an insert disposed within the aperture; a first wafer disposed over the insert; a second wafer disposed over the first wafer, wherein both the first wafer and the second wafer are configured for eutectic bonding when heated; two clamps disposed on the first side along the circular frame, wherein the two clamps are configured to contact the second wafer at respective clamp locations; and a plurality of pieces configured to secure the insert within the aperture, the plurality of pieces comprising both fixed and flexible pieces, the plurality of pieces comprising two fixed pieces disposed respectively adjacent to the clamp locations along the second side of the circular frame.
Abstract:
A microelectromechanical systems (MEMS) package with roughness for high quality anti-stiction is provided. A device substrate is arranged over a support device. The device substrate comprises a movable element with a lower surface that is rough and that is arranged within a cavity. A dielectric layer is arranged between the support device and the device substrate. The dielectric layer laterally encloses the cavity. An anti-stiction layer lines the lower surface of the movable element. A method for manufacturing the MEMS package is also provided.
Abstract:
The present disclosure relates to a method for manufacturing a microelectromechanical systems (MEMS) package. The method comprises providing a CMOS IC including CMOS devices arranged within a CMOS substrate. The method further comprises forming and patterning a metal layer over the CMOS substrate to form an anti-stiction layer and a fixed electrode plate and forming a rough top surface for the anti-stiction layer. The method further comprises providing a MEMS IC comprising a moveable mass arranged within a recess of a MEMS substrate and bonding the CMOS IC to the MEMS IC to enclose a cavity between the moveable mass and the fixed electrode plate and the anti-stiction layer.
Abstract:
The present disclosure relates to a MEMS package with a rough metal anti-stiction layer, to improve stiction characteristics, and an associated method of formation. In some embodiments, the MEMS package includes a MEMS IC bonded to a CMOS IC. The CMOS IC has a CMOS substrate and an interconnect structure disposed over the CMOS substrate. The interconnect structure includes a plurality of metal layers disposed within a plurality of dielectric layers. The MEMS IC is bonded to the CMOS IC, enclosing a cavity between the MEMS IC and the CMOS IC and a moveable mass arranged in the cavity. The MEMS package further includes an anti-stiction layer disposed under the moveable mass. The anti-stiction layer is made of metal and has a rough top surface.
Abstract:
The present disclosure relates to a MEMS package with a rough metal anti-stiction layer, to improve stiction characteristics, and an associated method of formation. In some embodiments, the MEMS package includes a MEMS IC bonded to a CMOS IC. The CMOS IC has a CMOS substrate and an interconnect structure disposed over the CMOS substrate. The interconnect structure includes a plurality of metal layers disposed within a plurality of dielectric layers. The MEMS IC is bonded to an upper surface of the interconnect structure and, in cooperation with the CMOS IC, enclosing a cavity between the MEMS IC and the CMOS IC. The MEMS IC has a moveable mass arranged in the cavity. The MEMS package further includes an anti-stiction layer disposed on the upper surface of the interconnect structure under the moveable mass. The anti-stiction layer is made of metal and has a rough top surface.
Abstract:
A microelectromechanical systems (MEMS) package with roughness for high quality anti-stiction is provided. A device substrate is arranged over a support device. The device substrate comprises a movable element with a lower surface that is rough and that is arranged within a cavity. A dielectric layer is arranged between the support device and the device substrate. The dielectric layer laterally encloses the cavity. An anti-stiction layer lines the lower surface of the movable element. A method for manufacturing the MEMS package is also provided.
Abstract:
The present disclosure relates to a MEMS package with a rough metal anti-stiction layer, to improve stiction characteristics, and an associated method of formation. In some embodiments, the MEMS package includes a MEMS IC bonded to a CMOS IC. The CMOS IC has a CMOS substrate and an interconnect structure disposed over the CMOS substrate. The interconnect structure includes a plurality of metal layers disposed within a plurality of dielectric layers. The MEMS IC is bonded to an upper surface of the interconnect structure and, in cooperation with the CMOS IC, enclosing a cavity between the MEMS IC and the CMOS IC. The MEMS IC has a moveable mass arranged in the cavity. The MEMS package further includes an anti-stiction layer disposed on the upper surface of the interconnect structure under the moveable mass. The anti-stiction layer is made of metal and has a rough top surface.
Abstract:
A micro electro mechanical system (MEMS) structure is provided, which includes a first substrate, a second substrate, a MEMS device and a hydrophobic semiconductor layer. The first substrate has a first portion. The second substrate is substantially parallel to the first substrate and has a second portion substantially aligned with the first portion. The MEMS device is between the first portion and the second portion. The hydrophobic semiconductor layer is made of germanium (Ge), silicon (Si) or a combination thereof on the first portion, the second portion or the first portion and the second portion and faces toward the MEMS device. A cap substrate for a MEMS device and a method of fabricating the same are also provided.
Abstract:
A micro electro mechanical system (MEMS) structure is provided, which includes a first substrate, a second substrate, a MEMS device and a hydrophobic semiconductor layer. The first substrate has a first portion. The second substrate is substantially parallel to the first substrate and has a second portion substantially aligned with the first portion. The MEMS device is between the first portion and the second portion. The hydrophobic semiconductor layer is made of germanium (Ge), silicon (Si) or a combination thereof on the first portion, the second portion or the first portion and the second portion and faces toward the MEMS device. A cap substrate for a MEMS device and a method of fabricating the same are also provided.