Abstract:
A multifrequency antenna, which may be used as a built-in antenna of a small and thin radio communication terminal, such as a mobile telephone, is able to receive radio waves of multifrequency bands without enlarging the shape thereof. The antenna is structured using a main mode resonance frequency and a high-order mode resonance frequency of a single-frequency plane antenna with a short-circuit plate. Specifically, a radiator conductor plate in an optional shape is arranged on a ground plate, and the radiator conductor plate is connected to the ground plate via the short-circuit plate. Power is supplied to the radiator conductor plate from a power-feeding source via a feeder cable. In the radiator conductor plate, a cut portion for shifting the high-order mode resonance frequency to the location at a predetermined distance from the short-circuit plate is formed, and the high-order mode resonance frequency is shifted into a desired band by this cut portion. Consequently, the multifrequency antenna operates at least at two frequencies: the main mode resonance frequency, and at least one high-order mode resonance frequency shifted by the cut portion. Thus, a small and thin multifrequency antenna can be realized at a low cost without a concomitant increase in both the mounting area and the mounting volume of the multifrequency antenna.
Abstract:
In a power supply circuit, a rectification circuit is coupled to a partial smoothing circuit, and an inverting circuit. The rectification circuit includes a rectifier coupled to a primary capacitor. The partial smoothing circuit includes a first, second, and third diode coupled together with the third diode in reverse polarity with the first and second diodes. The partial smoothing circuit also includes a series combination of a choke coil and a smoothing capacitor disposed in parallel with the second diode. A diode extends from the partial smoothing circuit to the inverting circuit. In one embodiment, the inverting circuit includes a main capacitor in parallel with a combination of a winding and an auxiliary capacitor. A switching means is coupled to the inverting circuit and the rectification circuit.
Abstract:
A P-type thermoelectric material consists essentially of iron disilicide, metallic manganese and metallic aluminium dissolved in or alloyed with the iron disilicide, and silicon oxide and/or aluminum oxide present in the iron disilicide. The manganese is contained in an amount of from 1.67 to 4.1 atomic % with respect to a sum of atoms of iron and silicon constituting the iron disilicide, the metallic manganese and the metallic aluminum taken as 100 atomic %, and the metallic aluminum contained in an amount of from 1.33 to 3.33 atomic % with respect thereto, and a sum of the metallic manganese and the metallic aluminum in an amount of from 4.0 to 5.34 atomic % with respect thereto. The P-type thermoelectric material having such a composition produces a thermoelectromotive force equal to or greater than those of the conventional P-type thermoelectric materials comprised of iron disilicide, and it exhibits a mean resistivity equal to or smaller than that of the N-type thermoelectric material. Hence, a thermocouple including the P-type thermoelectric material and the N-type thermoelectric material can be remarkably enhanced in the performance as a whole.
Abstract:
A toner for electrophotography produced by polymerizing a monomer dispersed by emulsification in the presence of a colorant and/or a magnetic powder, followed by coagulation is excellent in properties, particularly in cleaning properties, charge stability and caking resistance.
Abstract:
A vehicle includes: a motor generator generating driving power for traveling of the vehicle; an ECU for controlling the motor generator; and an inclination detecting unit for detecting an inclination of a road surface. The ECU executes a driving power change operation that causes the vehicle to travel while switching between a first state (high output state) of the motor generator where first-level driving power is generated and a second state (low output state) of the motor generator where driving power smaller than that in the first state is generated. When it is recognized that the vehicle is traveling on a downhill, based on the inclination detected by the inclination detecting unit, the ECU sets the driving power in the first state to be smaller than that when the vehicle travels on a flat road.
Abstract:
A vehicle includes a driving source generating driving power for running the vehicle, and a control device for controlling the driving source. The control device performs driving power variation operation on the driving source in which the driving source is switched between a first state where the driving source generates driving power and a second state where the driving source generates driving power of a level lower than the level of the driving power in the first state to run the vehicle. The control device performs the driving power variation operation during steady running when variation in driving power requested by a user falls within a prescribed range, and also performs the driving power variation operation during an acceleration request or during a deceleration request when the variation in the requested driving power increases or decreases beyond the prescribed range.
Abstract:
A vehicle includes a motor generator and an engine generating driving power for running, and an ECU for controlling the motor generator and the engine. If user request power and a vehicle speed are substantially constant when inertial running control is selected by a user, the ECU causes driving power variation operation to be performed on the motor generator and the engine in which the motor generator and the engine are switched between a low output state and a high output state. The vehicle runs with inertial force of the vehicle in the low output state. As a result, energy efficiency during vehicle running can be improved.
Abstract:
A coolant control device includes: first control means for, at warm-up of an internal combustion engine, circulating coolant in a first passage bypassing the engine and stopping coolant circulation in the second passage passing through the engine; second control means 0 for, at engine warm-up and when the quantity of heat required by a heater core is smaller than or equal to a predetermined threshold, circulating coolant in the first passage while adjusting the flow rate of coolant circulating in the first passage and stopping coolant circulation in the second passage; and third control means for, at engine warm-up and when the required quantity of heat exceeds the predetermined threshold, circulating coolant in the first passage without decreasing the flow rate of coolant circulating in the first passage and circulating coolant in the second passage while adjusting the flow rate of coolant circulating in the second passage.
Abstract:
A vehicle includes an engine and a motor generator generating driving power for running, and an ECU for controlling the engine and the motor generator. If user requested power and a vehicle speed are substantially constant when inertial running control is selected by a user, the ECU causes continuous driving power operation to be performed on the engine in which the engine is driven to continuously generate constant driving power, and causes driving power variation operation to be performed on the motor generator in which the motor generator is alternately switched between a low output state and a high output state in terms of driving power, thereby running the vehicle. As a result, energy efficiency during vehicle running can be improved.
Abstract:
A vehicle includes: a motor generator for generating driving power for traveling thereof; an ECU for controlling the motor generator; and an inclination detecting unit for detecting inclination of a road surface. The ECU performs power changing driving in which the vehicle is traveled while switching the motor generator between a first state (high output state) and a second state (low output state). In the first state (high output state), driving power of a first level is generated. In the second state (low output state), the driving power is made smaller than that in the first state. When it is recognized that the vehicle is traveling on an uphill road based on the inclination detected by the inclination detecting unit, ECU sets the driving power in the first state to be larger than that set when the vehicle is traveling on a flat road.