摘要:
It is an object of the present invention to provide a porous body containing an oxide semiconductor in which more efficient photocatalytic reactions and photoelectrode reactions occur. The present invention relates to a porous body having a network structure skeleton wherein 1) the aforementioned skeleton is composed of an inner part and a surface part, 2) the aforementioned inner part is substantially made of carbon material, and 3) all or part of the aforementioned surface part is an oxide semiconductor, and to a manufacturing method therefor.
摘要:
An object of the present invention is to provide an oxygen reduction electrode having excellent oxygen reduction properties (oxygen reduction catalyst abilities).The present invention encompasses: (1) A method for manufacturing a nanostructured manganese oxide having a dendritic structure formed from an agglomeration of primary particles, wherein the method comprises the steps of: removing components from a target plate that comprises one or more kinds of manganese oxides by irradiating the target plate with laser light in an atmosphere comprising a mixed gas of inert gas and oxygen gas, the content of the oxygen gas in the mixed gas being no less than 0.05% but no more than 0.5% as measured by mass flow rate; and depositing the removed components on a substrate that is opposed to the target plate substantially in parallel to obtain the nanostructured manganese oxide, and (2) an oxygen reduction electrode comprising a nanostructured transition metal oxide having a dendritic structure formed from an agglomeration of primary particles.
摘要:
The present invention provides a method for producing a manganese oxide nanoparticle dispersed material having steps of dissolving manganese nitrate in a polyamide acid solution (Step 1); forming a coating on the surface of the substrate using the polyamide acid solution containing manganese nitrate dissolved therein (Step 2); and carbonizing the polyamide acid and depositing manganese oxide nanoparticles by subjecting the coating to a heat treatment at a temperature not less than 600° C. but not more than 1200° C. (Step 3).
摘要:
Conventional porous carbon materials obtained by carbonizing an organic gel were prone to shrinkage during their manufacture, in the course of which the density rose and the specific surface area decreased. Another problem was that density and specific surface area were difficult to control after an organic gel had already been formed. In the present invention, a carbon material with a large specific surface area is formed by forming a composite porous material having a reticulated skeleton and composed of a dry gel of an inorganic oxide, and taking advantage of the reaction of this dry gel of an inorganic oxide as a structural support. In one method, a carbon material is formed in this reticulated skeleton in a state in which the characteristics of a dry gel of an inorganic oxide with a large specific surface area are maintained. In another method, the specific surface area of a carbon material is further increased by removing the inorganic oxide of the reticulated skeleton in which the carbon material was formed.
摘要:
The present invention provides an electrochemical electrode wherein transition metal (nickel) nanoparticles are used to form an active layer having a large surface area without using a conductive support while maintaining dispersibility and stability, and a method for producing the same. The present invention provides an electrochemical electrode having a conductive substrate and an active layer formed on the conductive substrate, wherein (1) the active layer has a nickel-containing nanostructured material having a dendritic structure formed by agglomerating a plurality of primary particles, and (2) each primary particle has a core and a shell surrounding the core wherein the core is formed of a nickel nanocrystal and the shell is formed of a nickel oxide film; and the present invention also provides a method for producing such an electrochemical electrode comprising: Step 1 of obtaining nickel nanocrystal particles, Step 2 of obtaining primary particles by forming a nickel oxide film on the surface of each nickel nanocrystal particle, and Step 3 of forming a dendritic structure by agglomerating a plurality of the primary particles by depositing the primary particles substantially perpendicular to a conductive substrate.
摘要:
An object of the present invention is to provide a photovoltaic cell that demonstrates a superior photoelectric conversion function. The present invention relates to a photovoltaic cell comprising a semiconductor electrode, an electrolyte and a counter electrode, wherein (1) the semiconductor electrode contains an oxide semiconductor layer having photocatalytic activity, (2) the oxide semiconductor layer contains secondary particles in which primary particles comprising a metal oxide are aggregated, (3) the average particle diameter of the primary particles is from 1 nm to 50 nm, and the average particle diameter of the secondary particles is from 100 nm to 10 μm, and (4) the photovoltaic cell generates electromotive force by radiating light of a wavelength substantially equal to the average particle diameter of the secondary particles onto the semiconductor electrode.
摘要:
An object of the present invention is to provide an oxygen reduction electrode having excellent oxygen reduction properties (oxygen reduction catalyst abilities). The present invention encompasses: (1) A method for manufacturing a nanostructured manganese oxide having a dendritic structure formed from an agglomeration of primary particles, wherein the method comprises the steps of: removing components from a target plate that comprises one or more kinds of manganese oxides by irradiating the target plate with laser light in an atmosphere comprising a mixed gas of inert gas and oxygen gas, the content of the oxygen gas in the mixed gas being no less than 0.05% but no more than 0.5% as measured by mass flow rate; and depositing the removed components on a substrate that is opposed to the target plate substantially in parallel to obtain the nanostructured manganese oxide, and (2) an oxygen reduction electrode comprising a nanostructured transition metal oxide having a dendritic structure formed from an agglomeration of primary particles.
摘要:
Methods of effectively utilizing yeast-containing waste products generated after yeast use can be applied to absorbing agents, drying agents, soil conditioners, catalysts, and other common applications in the same manner as to charcoal-based materials of other materials by carbonizing the waste product, but a new search was needed in order to broaden the industrial utilization of these products. By supporting a particulate or powdered charcoal-based material obtained by carbonizing a yeast-containing material on an electrically conductive gas-permeable base, an electrode can be obtained that is capable of the electrochemical reduction of oxygen. The present charcoal-based material can provide new applications that have not been hitherto proposed, in the sense that oxygen can be electrochemically reduced smoothly and at a small overvoltage (resistance), and a large electromotive force can be obtained, by placing the charcoal-based material at the intersection of the ion path and the oxygen path.
摘要:
The present invention is aimed to realize, in a fuel cell with an oxygen electrode (a catalytic electrode), both catalytic function and immobilization of the catalyst nanoparticles when the catalyst nanoparticles are very small nanoparticles in the size of 1-3 nm.Oxygen electrode used in the fuel cell according to the present invention is an oxygen electrode comprising a plurality of carbon particles, a carbon thin-film, and surface nanostructure, wherein the carbon particles are bonded to one another with the carbon thin-film 2, the surface nanostructure is formed on the surface of the carbon thin-film, the surface nanostructure comprises catalyst nanoparticles made of platinum (Pt) and carbon nanoparticles, diameter of each of the carbon particles is 30 nm or more and 100 nm or less, diameter of the catalyst nanoparticle is 1.7 nm or more and 3.1 nm or less, and diameter of the carbon nanoparticle is 1.0 nm or more and 11.2 nm or less. According to this combination of these elements, the catalyst nanoparticles are confined within three-dimensional structure to be formed by the carbon nanoparticles and are immobilized without losing space which allows any reactant to be accessed to the surface of the catalyst nanoparticles.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.