Abstract:
A transducer system with a transducer and circuitry for applying a waveform to excite the transducer during an excitation period. The applying circuitry also comprises circuitry for changing a frequency of the waveform during the excitation period.
Abstract:
Methods for color Doppler imaging in an ultrasound imaging system are disclosed herein. Ultrasound radio frequency RF data is demodulated using a nested processing loop including an inner loop and an outer loop. A plurality of Wall filter coefficients are fetched from ultrasound imaging system memory in a single memory access cycle. The plurality Wall filter coefficients are applied to a plurality of complex ultrasound data values in a single execution cycle. The Wall filtered ultrasound data are provided to a flow estimator.
Abstract:
Input-output linearization (IOL) and extended state observer (ESO) techniques are applied to a Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM). In one such approach, at least one gain value is determined based at least in part on a given bandwidth value. Operating parameters for the motor are determined based on the at least one gain value and information from a current sensor regarding motor current. Control signals used to the control the motor are determined based on the determined operating parameters. Accordingly, automated control can be effected through setting a bandwidth value through the implementation of IOL and ESO techniques.
Abstract:
A motor controller includes a square wave voltage generator and adding circuitry for adding the square wave voltage to a first drive voltage that is connectable to the stator windings of a motor. A current monitor for monitoring the input current to the motor as a result of the square wave voltage. A device for determining the position of the rotor based on the input current.
Abstract:
An example apparatus includes: machine-readable instructions; and programmable circuitry configured to at least one of instantiate or execute the machine-readable instructions to: receive burst excitation information including a burst start frequency, a burst stop frequency, and a burst duration, the burst start frequency and the burst stop frequency defining a range of frequencies of the burst excitation information; generate first and second sub burst excitation information based on the burst excitation information, the first and second sub burst excitation information including a sub burst duration based on the burst duration, a temperature sense interval, and a temperature sense duration, the temperature sense interval being a time between temperature measurements, the temperature sense duration being a time of a temperature measurement; and generate an excitation signal responsive to the first and second sub burst excitation information and temperature measurements, the excitation signal having frequencies of the range of frequencies.
Abstract:
A transducer system with a transducer and circuitry for applying a waveform to excite the transducer during an excitation period. The applying circuitry also comprises circuitry for changing a frequency of the waveform during the excitation period.
Abstract:
Described examples include an integrated circuit having an analog-to-digital converter operable to receive an input signal derived from a light signal and convert the input signal to a digital received signal, the analog-to-digital converter operable to receive the input signal during at least one window. The integrated circuit further has a receiver operable to receive the digital received signal, the receiver operable to determine a distance estimate of an object from which the light signal is reflected based on the digital received signal. In an example, the window locations are chosen to correspond to the locations of maximum slope in the signal.
Abstract:
A transducer system with a transducer and circuitry for applying a waveform to excite the transducer during an excitation period. The applying circuitry also comprises circuitry for changing a frequency of the waveform during the excitation period.
Abstract:
A method includes reading first and second timer count values from a timer. The first timer count value is associated with a first time point, and the second timer count value is associated with a second time point. Also, the method includes calculating a difference between the first and the second timer count values, and determining whether the difference is within a range. The range is based on a desired executing frequency to perform a computing task, a variation of the desired executing frequency, and a timer frequency. Further, based on the difference not being within the range, the method includes setting an error flag value to be true and incrementing an error count value.
Abstract:
Disclosed examples include ultrasonic lens cleaning systems and driver circuits to clean a lens using four or more transducer segments mechanically coupled to the lens, in which the driver circuit provides phase shifted oscillating signals to the transducer segments to generate a mechanical traveling wave rotating around the center axis of the lens to vibrate the lens for improved ultrasonic cleaning.