Abstract:
A microwave generator of a plasma processing apparatus of an embodiment includes a first module, a second module, and a combiner. The first module includes a distributor which distributes a high-frequency electric signal, and outputs a plurality of high-frequency electric signals. A plurality of amplifier modules of the second module respectively amplify the plurality of high-frequency electric signals from the first module to output a plurality of microwaves. The combiner combines the plurality of microwaves from the plurality of amplifier modules to output a microwave. Each of the plurality of amplifier modules has a DC/DC converter and an amplifier. The DC/DC converter steps down the voltage of a first direct-current power from an external direct-current power supply to output a second direct-current power. The amplifier amplifies a high-frequency electric signal by using the second direct-current power to output a microwave.
Abstract:
A microwave plasma processing apparatus includes a processing space; a microwave generator which generates microwaves for generating a plasma; a distributor which distributes the microwaves to a plurality of waveguides; an antenna installed in a processing container to seal the processing space and to radiate microwaves distributed by the distributor, to the processing space; and a monitor unit configured to monitor a voltage of each of the plurality of waveguides. A control unit acquires a control value of a distribution ratio of the distributor, which corresponds to a difference between a voltage monitor value of the monitor unit and a predetermined voltage reference value, from a storage unit that stores the difference and the control value corresponding to each other. The control unit is also configured to control the distribution ratio of the distributor, based on the acquired control value.
Abstract:
A plasma processing apparatus performs plasma processing in a manner that first and second radio-frequency power supplies generate pulses, respectively, and a matching box controls load-side impedance of the second radio-frequency power supply, and includes: a calculation circuit that acquires power of corresponding reflected wave when the first radio-frequency power supply generates continuous pulse, and the second radio-frequency power supply generates intermittent pulse, based on different set parameters, and calculates an index value indicating the state of reflected wave; and a determination circuit that determines set parameters to be specified in the first and second radio-frequency power supplies, based on variation of each calculated index value, and derives a range to be excluded from a calculation target when the index value to be used for controlling the matcher is calculated.
Abstract:
A plasma processing apparatus including: an inference part that infers a set frequency of a radio frequency for generating plasma by inputting a processing condition for performing a plasma processing into a learned model that has been trained using learning data including the set frequency that minimizes power of a reflective wave reflected from a processing space and a processing condition corresponding to the set frequency, the set frequency being searched by changing the set frequency of the radio frequency for generating plasma when a plasma processing is performed under each of a plurality of processing conditions.
Abstract:
A plasma processing apparatus comprises a processing chamber accommodating a substrate, and defining a processing space by an upper wall, a side wall, and a lower wall, a microwave generator configured to generate a microwave for generating plasma, a plurality of microwave radiators provided above the upper wall, and configured to radiate the microwave toward the processing chamber, a plurality of microwave transmission windows provided at positions corresponding to the plurality of microwave radiators in the upper wall, and formed of a dielectric, and a plurality of resonator array structures disposed on lower surfaces of the plurality of microwave transmission windows, respectively. The resonator array structures are formed by arranging a plurality of resonators that are capable of resonance with a magnetic field component of the microwave and are smaller in size than a wavelength of the microwave.
Abstract:
A plasma processing apparatus according to an exemplary embodiment includes a chamber, a microwave generator, an antenna, and a coaxial waveguide. The antenna is configured to radiate a microwave into the chamber. The coaxial waveguide is configured to cause a microwave output from the microwave generator to propagate between the microwave generator and the antenna. A diameter d of an outer circumferential surface of an inner conductor and a diameter D of an inner circumferential surface of an outer conductor of each of one or more coaxial tubes configuring the coaxial waveguide satisfy D+d≤76.3 mm, d≥21 mm, and D≥3.71×(R+1)/log10(R). R is D/d.
Abstract:
A method includes setting a setting duty ratio of a pulse to a predefined first setting duty ratio, detecting a measured value of power of a microwave, and calculating an error of the measured value of the power with respect to the setting power level for each setting power level, calculating a correction value for the power for each setting power level on the basis of the error, and determining a first function indicating a relationship between the setting power level and the correction value by logarithmically approximating the relationship between the setting power level and the correction value, and determining the correction function indicating a relationship among the setting duty ratio, the setting power level, and the correction value by approximating the correction value defined by the first function, and the predefined correction value at a setting duty ratio of 100%, with a linear function.
Abstract:
A device includes a microwave generation unit that averages the first measured values and the second measured values at a predetermined movement average time and a predetermined sampling interval, and controls the microwave such that a value obtained by subtracting the averaged second measured value from the averaged first measured value comes close to the setting power, and in which the predetermined movement average time is 60 μs or less, and a relationship of y≥78.178x0.1775 is satisfied when the predetermined sampling interval is indicated by x, and the predetermined movement average time is indicated by y.
Abstract:
A device monitors a pulse frequency and a duty ratio of a microwave generated by a microwave output device provided in a plasma processing apparatus. The plasma processing apparatus includes a chamber main body, the microwave output device, a wave guide tube, and a tuner. The microwave output device generates the microwave of which power is pulse-modulated. The device includes a wave detection unit and an acquisition unit. The wave detection unit detects a measured value corresponding to travelling wave power of a microwave in the wave guide tube. The acquisition unit acquires a frequency and a duty ratio of the travelling wave power on the basis of the measured value detected by the wave detection unit.
Abstract:
A device includes a microwave generation unit that generates a microwave having a bandwidth, an output unit, a directional coupler, and a measurement unit. The microwave generation unit generates a microwave of which power is pulse-modulated to have a high level and a low level. The measurement unit determines a first high measured value and a first low measured value respectively indicating a high level and a low level of power of travelling waves in the output unit on the basis of parts of the travelling waves output from the directional coupler. The microwave generation unit controls high level power of the pulse-modulated microwave on the basis of and averaged first high measured value and high level setting power, and controls low level power of the pulse-modulated microwave on the basis of an averaged first low measured value and low level setting power.