Abstract:
A method for fabricating a transistor having a fully silicided gate is described. A silicon substrate with a semi-finished transistor formed thereon is provided, wherein the transistor comprises a gate dielectric film, a silicon gate, a cap layer on the silicon gate, a spacer and a source/drain region. A raised source/drain is formed on the source/drain region, and then the cap layer is removed. Subsequently, a full silicidation process is performed to fully silicide the silicon gate.
Abstract:
A method for fabrication a shallow trench isolation (STI) structure by combining uses of a STI process and a local oxidation (LOCAS) process is provided. The method includes forming a first liner oxide layer over a substrate, on which a patterned hard material layer is formed. A hard spacer is formed on each sidewall of the hard material layer. A LOCOS structure is formed on the substrate other than the hard spacer and the hard material layer. Then, the hard spacer is removed to expose a portion of the pad oxide on the substrate. A trench is formed in the substrate on each side of the LOCOS structure. A conformal second liner oxide layer is formed on the inner surface of the trench. The trench is filled with a polysilicon layer, having a surface higher than the substrate surface. A second thermal process is performed to oxidize the polysilicon layer so as to merge the LOCOS structure to cover the surface of the polysilicon layer. The hard material layer is removed to form the isolation structure of the invention.
Abstract:
A fabrication method for a metal oxide semiconductor (MOS) transistor involves forming gate oxide layers of different thicknesses on a core region and a input/output (I/O) region. After forming wells in the substrate, two implantation regions for providing a threshold voltage (VT) adjustment and an anti-punch through layer are formed respectively in a P-well and a N-well of the core region as well as a P-well and a N-well of the I/O region. The method involves forming a pattern mask on the gate oxide layer, wherein the pattern mask has an opening, which may be a channel that corresponds to the P-well of the core region. With the pattern mask serving as an ion implantation mask, two implantation regions for providing the VT adjustment and the anti-punch through layer are formed in the P-well of the core region. After the pattern mask is removed, the steps described above are repeated in order to form implantation regions in other regions, but the sequence of the steps can be swapped around at will. The subsequent process for the MOS transistor is then performed.
Abstract:
A method and system for receiving CIMT encoded data transmitted in simplex mode. The receiver (12) is adapted to receive a stream of digital data and analyze successive portions thereof to identify a predetermined pattern of data. The receiver (12) outputs the received digital data in response to a detection of the predetermined pattern of data and, in the alternative, outputs other data in response to a failure to detect the predetermined pattern of data. In the illustrative embodiment, the stream of digital data is transmitted as conditional invert master transition encoded simplex data. The receiver (12) includes a CIMT decoder (16) which analyzes the input data to identify a master transition therein. The receiver (12) uses a local clock to analyze successive portions of the received data stream and word alignment logic to identify a master transition therein. In the best mode, the inventive teachings are implemented in a communications system having a CIMT encoder (13) which transmits a time scrambled flag bit along with a stream of CIMT encoded data. The receiver (12) descrambles the flag bit and uses it to detect the master transition therein in the presence of static data.
Abstract:
A method for fabricating an embedded DRAM. A substrate having a memory circuit region and a logic circuit region is provided. A first gate, a first source/drain region and a second source/drain region are formed in the memory circuit region. A second gate and a third source/drain region are formed in the logic circuit region. A first dielectric layer is formed over the substrate. In the first dielectric layer, a first contact hole is formed to expose the first source/drain region and a second contact hole is formed to expose the second gate and the third source/drain region. A bit line is formed to electrically couple with the first source/drain region through the first contact hole. A local interconnect is formed to electrically couple with the second gate and the third source/drain region through the second contact hole. A second dielectric layer is formed over the substrate. A third contact hole is formed in the first dielectric layer and the second dielectric layer to expose the second source/drain region. A capacitor is formed to electrically couple with the second source/drain region through the third contact hole.
Abstract:
A method for fabricating a local interconnect. A gate having a gate oxide layer, a gate polysilicon layer and a cap layer is formed on a provided substrate. A spacer is formed on the sidewall of the gate, and a source/drain region is formed in the substrate. A planarized dielectric layer is formed over the substrate to expose the cap layer. A portion of the dielectric layer and the spacer on one side of the gate is removed to form an opening, so that the source/drain region is exposed. The opening is transformed into a local-interconnect opening by removing the cap layer. A local interconnect is formed by forming a conductive layer in the local-interconnect opening.
Abstract:
A method is provided for fabricating a dual damascene structure on a substrate with a first dielectric layer, an etching stop layer, a second dielectric layer, and a hard mask layer formed on it. The first step is to define the hard mask layer in order to form the first hole, which corresponds to the position of the conductive layer exposing the second dielectric layer. Then, an etching process, including an etching step with medium SiO.sub.2 /SiN etching selectivity and an over-etching step with high SiO.sub.2 /SiN etching selectivity, is performed to form the second hole and the third hole. Finally, a glue/barrier layer and a metal layer are filled into the second hole and the third hole, thus accomplishing a dual damascene structure.
Abstract:
A method of fabricating a semiconductor device. On a semiconductor substrate comprising a device isolation structure and an active region isolated by the device isolation region, an oxide layer is formed and etched on the active region to form an opening, so that the active within the opening is exposed. A first spacer is formed on a side wall of the opening. A gate oxide layer is formed on the active region within the opening. A conductive layer is formed on the gate oxide layer, so that the opening is filled thereby. The oxide layer is removed. The exposed active region is lightly doped to form a lightly doped region by using the conductive layer and the first spacer as a mask. A second spacer is formed on a side wall of the first spacer and leaves a portion of the first spacer to be exposed. The exposed active region is heavily doped to form a source/drain region by using the conductive layer, the first spacer, and the second spacer as a mask. The first spacer is removed to define a gate, so that an air gap between the gate and the second spacer is formed.
Abstract:
A method for fabricating a MOS transistor device is provided. The method contains sequentially forming an oxide layer, a polysilicon layer, and a cap layer over a semiconductor substrate. Patterning the oxide layer, the polysilicon layer, the cap layer, and the substrate forms a trench opening in the substrate. A shallow trench isolation (STI) structure is formed by filling the opening with insulating material. A first-stage gate structure is formed on the substrate by patterning the oxide layer, the polysilicon layer, and the cap layer. A top portion of the STI structure above the substrate surface is exposed. A light ion implantation is performed to form a lightly doped region. Several spacers are respectively formed on each sidewall of the first-stage gate structure and each exposed sidewall of the STI structure. A heavy ion implantation process is performed to form interchangeable source/drain regions at each side of the first-stage gate structure. The cap layer is removed to leave an opening. A conductive layer is formed over the substrate and is planarized so that a remaining portion of the conductive layer fills the opening to serve as a gate metal layer. The remaining portion of the conductive layer also fills a free space between the spacers above the interchangeable source/drain regions to form several contact plugs. A dielectric layer is formed over the substrate with second contact plugs, respectively electrically coupled to the gate metal layer and the first contact plugs.
Abstract:
The present invention provides an air filter including a main body, a pressure fan, a filter mode and a fixing assembly. The main body has a containing room, an entrance hole and an exit hole. The pressure fan is disposed in the containing room. The filter mode includes a first filter layer, a second filter layer and a frame body. The first filter layer is disposed in the entrance hole, and the second filter layer is disposed in the frame body. As such, users can select to use only the first filter layer or both filter layers at one time. Moreover, users only need to let the frame body pivot to a position away from the entrance hole so that users can change the filter layers faster and easier.