Abstract:
A method of manufacturing MOS device including the steps of providing a semiconductor substrate that has a device isolation structure thereon, and then depositing a gate oxide layer, a polysilicon layer and an anti-reflection coating in sequence over the substrate. Next, a gate structure is patterned out of the gate oxide layer, the polysilicon layer and the anti-reflection coating. Then, spacers are formed on the sidewalls of the gate structure. Thereafter, a metal silicide layer is formed over source/drain regions. After that, an inter-layer dielectric (ILD) layer is formed over the gate structure and the entire substrate. Then, the inter-layer dielectric layer is planarized to expose the anti-reflection coating. Next, the anti-reflection coating is removed, and then a barrier layer is deposited over the inter-layer dielectric layer and the polysilicon layer. Subsequently, a conductive layer is deposited over the barrier layer. Finally, a chemical-mechanical polishing operation is carried out to planarize the conductive layer, retaining only the conductive layer above the polysilicon layer.
Abstract:
A method for fabrication a shallow trench isolation (STI) structure by combining uses of a STI process and a local oxidation (LOCAS) process is provided. The method includes forming a first liner oxide layer over a substrate, on which a patterned hard material layer is formed. A hard spacer is formed on each sidewall of the hard material layer. A LOCOS structure is formed on the substrate other than the hard spacer and the hard material layer. Then, the hard spacer is removed to expose a portion of the pad oxide on the substrate. A trench is formed in the substrate on each side of the LOCOS structure. A conformal second liner oxide layer is formed on the inner surface of the trench. The trench is filled with a polysilicon layer, having a surface higher than the substrate surface. A second thermal process is performed to oxidize the polysilicon layer so as to merge the LOCOS structure to cover the surface of the polysilicon layer. The hard material layer is removed to form the isolation structure of the invention.
Abstract:
A method for fabricating an embedded DRAM. A substrate having a memory circuit region and a logic circuit region is provided. A first gate, a first source/drain region and a second source/drain region are formed in the memory circuit region. A second gate and a third source/drain region are formed in the logic circuit region. A first dielectric layer is formed over the substrate. In the first dielectric layer, a first contact hole is formed to expose the first source/drain region and a second contact hole is formed to expose the second gate and the third source/drain region. A bit line is formed to electrically couple with the first source/drain region through the first contact hole. A local interconnect is formed to electrically couple with the second gate and the third source/drain region through the second contact hole. A second dielectric layer is formed over the substrate. A third contact hole is formed in the first dielectric layer and the second dielectric layer to expose the second source/drain region. A capacitor is formed to electrically couple with the second source/drain region through the third contact hole.
Abstract:
A method for fabricating a local interconnect. A gate having a gate oxide layer, a gate polysilicon layer and a cap layer is formed on a provided substrate. A spacer is formed on the sidewall of the gate, and a source/drain region is formed in the substrate. A planarized dielectric layer is formed over the substrate to expose the cap layer. A portion of the dielectric layer and the spacer on one side of the gate is removed to form an opening, so that the source/drain region is exposed. The opening is transformed into a local-interconnect opening by removing the cap layer. A local interconnect is formed by forming a conductive layer in the local-interconnect opening.
Abstract:
A method for fabricating a MOS transistor device is provided. The method contains sequentially forming an oxide layer, a polysilicon layer, and a cap layer over a semiconductor substrate. Patterning the oxide layer, the polysilicon layer, the cap layer, and the substrate forms a trench opening in the substrate. A shallow trench isolation (STI) structure is formed by filling the opening with insulating material. A first-stage gate structure is formed on the substrate by patterning the oxide layer, the polysilicon layer, and the cap layer. A top portion of the STI structure above the substrate surface is exposed. A light ion implantation is performed to form a lightly doped region. Several spacers are respectively formed on each sidewall of the first-stage gate structure and each exposed sidewall of the STI structure. A heavy ion implantation process is performed to form interchangeable source/drain regions at each side of the first-stage gate structure. The cap layer is removed to leave an opening. A conductive layer is formed over the substrate and is planarized so that a remaining portion of the conductive layer fills the opening to serve as a gate metal layer. The remaining portion of the conductive layer also fills a free space between the spacers above the interchangeable source/drain regions to form several contact plugs. A dielectric layer is formed over the substrate with second contact plugs, respectively electrically coupled to the gate metal layer and the first contact plugs.
Abstract:
A method for manufacturing metal oxide semiconductor field effect transistor is disclosed. The metal oxide semiconductor field effect transistor is formed by a specific fabricating process that disadvantages of thermal damage are effectively prevented. According to the method, first a substrate is provided. Second, an isolation and a well are formed in the substrate, and then a first dielectric layer, a conductive layer and an anti-reflection coating layer are formed on the substrate sequentially. Third, a gate is formed on the substrate, and then a source and a drain are formed in the substrate and a spacer is formed on the substrate. Fourth, both source and drain are annealed, and then a first salicide is formed on both source and drain. Fifth, a second dielectric layer is formed on the substrate and is planarized, where the anti-reflecting coating layer is totally removed and the conductive layer is partially removed. Sixth, a second salicide is formed on the conductive layer. Seventh, the spacer is removed and both a halo and a source drain extension are formed in substrate. Finally, a third dielectric layer is formed on second dielectric layer. Obviously, one main characteristic of the invention is both source drain extension and halo are formed after a plurality of thermal processes such as deposition, annealing and formation of salicide.
Abstract:
A method for manufacturing semiconductor device. The method includes the steps of providing a substrate that has a gate structure thereon, and then forming offset spacers on the sidewalls of the gate structure. Thereafter, a thin oxide annealing operation is conducted, and then a first ion implantation is carried out using the gate structure and the offset spacers as a mask to form lightly doped drain regions in the substrate. Subsequently, secondary spacers are formed on the exterior sidewalls of the offset spacers. Finally, a second ion implantation is carried out using the gate structure, the offset spacers and the secondary spacers as a mask to form source/drain regions within the lightly doped drain regions.
Abstract:
A method for fabricating a metal-oxide semiconductor (MOS) transistor is provided. The method has steps of sequentially forming an oxide layer, a polysilicon layer and a cap layer on a semiconductor substrate to form a first-stage gate. An interchangeable source/drain region with a lightly doped drain (LDD) structure is formed in the substrate at each side of the first-stage gate. An insulating layer is formed over the substrate, and is planarized so as to exposed the cap layer. Removing the exposed cap layer forms an opening that exposes the polysilicon layer. Using the insulating layer as a mask, a self-aligned selective local implantation process is performed to form a threshold-voltage doped region and an anti-punch-through doped region below the oxide layer in the substrate. A conductive layer is formed over the substrate to fill the opening. A chemical mechanical polishing process is performed to expose the insulating layer so that a remaining portion of the conductive layer fills the opening to form together with the polysilicon layer and the oxide layer to serve as an gate structure.
Abstract:
A method of fabricating a metal oxide semiconductor includes formation of a gate on a substrate. A source/drain extension is formed beside the gate in the substrate. An ion implantation step is performed to implant heavy impurities with a low diffusion coefficient in the substrate. A heavily doped halo region is formed in the substrate below the source/drain extension. A tilt-angled halo implantation step is performed to form a halo-implanted region in the substrate to the side of the source/drain extension below the gate.
Abstract:
A method of fabricating a semiconductor device is provided herein. The semiconductor device includes a substrate, a gate dielectric layer, a gate, a pair of source/drain regions and a stressed layer. The gate dielectric layer is disposed on the substrate and the gate whose top area is larger than its bottom area is disposed on the gate dielectric layer. The source/drain regions are disposed in the substrate next to the sidewalls of the gate. The stressed layer is disposed on the substrate to cover the gate and the source/drain regions.