Abstract:
A method of fabricating a semiconductor device is provided herein. The semiconductor device includes a substrate, a gate dielectric layer, a gate, a pair of source/drain regions and a stressed layer. The gate dielectric layer is disposed on the substrate and the gate whose top area is larger than its bottom area is disposed on the gate dielectric layer. The source/drain regions are disposed in the substrate next to the sidewalls of the gate. The stressed layer is disposed on the substrate to cover the gate and the source/drain regions.
Abstract:
Described is a system and method that enables project management across application programs, including an email program, calendar program, spreadsheet program, word processing program, note taking program and others. A central project-related view provides access to project-related data items and may display a schedule, a task list of tasks filtered as being relevant to a project, a note page related to a project, and emails relevant to the project. In addition, other application objects (file, documents, presentations and spreadsheets) are also captured in the view and presented for easy access. Metadata including a project identifier is maintained in a database for the various data items, allowing rapid location of the data items related to a project via query techniques. A project palette allows access to the items from within another application program, and a project gallery allows a user alternative access to the files related to a project.
Abstract:
A power control unit of a display apparatus includes an AC-to-DC converter for receiving an external AC power. A regulator receives a DC output from the converter, and is operable in one of an enabled state of outputting a target DC power when receiving a first level signal, and a disabled state of not outputting the target DC power when receiving a second level signal. An electronic switch is operable for switching from an OFF-mode, where a processor permits a delay circuit to output the second level signal to the regulator, to an ON-mode, where the electronic switch initially enables the delay circuit to output the first level signal to the regulator such that the processor receives the target DC power from the regulator and where the electronic switch outputs a trigger signal to the processor so as to enable the processor to latch the first level signal and to provide the target DC power to a display module.
Abstract:
A detachable laser pointer is constructed to include a mounting base, the mounting base having a smoothly arched rear coupling groove for coupling to the shaft of a golf putter and a locating plate of C-shaped cross section upwardly extended from the smoothly arched coupling groove for plugging in between the shaft and grip of the golf putter and a front receiving groove, a joint rotatably coupled to the receiving groove, a laser module pivoted to the joint and adapted for emitting a laser beam to aim the putter head of the golf putter to the hole.
Abstract:
A method of for fabrication a metal oxide semiconductor transistor is described. A substrate with an isolation structure thereon is provided. A gate oxide layer is formed on the substrate. A polysilicon layer is formed on the gate oxide layer. The polysilicon layer is patterned to form a gate on the gate oxide layer. An offset spacer is formed on the sidewall of the gate. A source/drain extension is formed in the substrate on two sides of the gate by ion implantation. An insulating spacer is formed on the sidewall of the offset spacer. A source/drain region is formed in the substrate by ion implantation using the gate, the offset spacer and the insulating spacer as a mask. Salicide is formed on the gate and on the surface of the source/drain region. After forming the salicide, the offset spacer is removed. After removing the offset spacer, a halo doped region is formed in the substrate below the source/drain extension by ion implantation.
Abstract:
A method for forming a polysilicon gate electrode. A semiconductor is provided. A gate oxide layer, a partially doped polysilicon layer and an undoped polysilicon are sequentially formed over the semiconductor substrate. The undoped polysilicon layer, the partially doped polysilicon layer and the gate oxide layer are patterned to form a gate electrode.
Abstract:
A method of manufacturing MOS device including the steps of providing a semiconductor substrate that has a device isolation structure thereon, and then depositing a gate oxide layer, a polysilicon layer and an anti-reflection coating in sequence over the substrate. Next, a gate structure is patterned out of the gate oxide layer, the polysilicon layer and the anti-reflection coating. Then, spacers are formed on the sidewalls of the gate structure. Thereafter, a metal silicide layer is formed over source/drain regions. After that, an inter-layer dielectric (ILD) layer is formed over the gate structure and the entire substrate. Then, the inter-layer dielectric layer is planarized to expose the anti-reflection coating. Next, the anti-reflection coating is removed, and then a barrier layer is deposited over the inter-layer dielectric layer and the polysilicon layer. Subsequently, a conductive layer is deposited over the barrier layer. Finally, a chemical-mechanical polishing operation is carried out to planarize the conductive layer, retaining only the conductive layer above the polysilicon layer.
Abstract:
A method for fabricating a semiconductor device, such as a MOS (metal-oxide semiconductor) transistor, with self-aligned silicide is provided. This method can prevent junction leakage between the silicide and the substrate so as to allow the resultant semiconductor device to have reliable performance. The method includes the steps of preparing a semiconductor substrate; forming at least one transistor element over the substrate, the transistor element including a pair of source/drain regions, a gate, a dielectric layer over the gate, and a spacer on the sidewall of the gate; and performing an ion-bombardment process so as to transport one part of the dielectric layer that is adjacent to the top of the spacer to beside the bottom of the spacer. Through this method, the resultant semiconductor device is reliable in operation since the drawback of the occurrence of leakage current or short-circuit that could be otherwise resulted between the self-aligned silicide and the substrate owing to the short-channel effect can be eliminated. Moreover, the resultant semiconductor device has increased anti-static capability that can protect the semiconductor device against electro-static damage.
Abstract:
A method for forming a self-aligned contact window such that the method is compatible with the process of forming a self-aligned titanium silicide layer on the same device, and hence capable of miniaturizing device dimensions. Furthermore, this invention utilizes the thicker etching stop layer thickness above the gate region than above the source/drain region to protect the titanium silicide layer in the gate region against electrical contact with the self-aligned contact.
Abstract:
A method of forming salicide, of which the characteristics is the formation of a silicon nitride layer before the source/drain being implanted with dopant. The silicon nitride layer avoid the oxygen within the oxide layer to implant into the source/drain. Thus, a better salicide is obtained. In addition, the formation of the parasitic spacers made of silicon nitride at the side wall bottom of the gate spacer increases the distance between the salicide and the junction. Consequently, the leakage current is prevented. While the silicon nitride layer is removed, the polysilicon of gate and the silicon of the source/drain are amorphized. This is advantageous to the formation of salicide without the step of ion implantation.