摘要:
A gas is detected using a MEMS gas sensor. The electrical power to a heater in the gas sensor is changed between a low level, a high level suitable for detection of detection target gas, and a 0 level, and, therefore, poisonous gas is evaporated or oxidized at the low level, and the detection target gas is detected at the high level.
摘要:
A prepreg containing components (A) to (C) defined below, wherein component (A) is placed on one surface or both surfaces of a layer comprising components (B) and (C), 90% or more by area of component (A) being present in a region(s) extending from the surface(s) of the resulting prepreg containing components (A) to (C) to a depth equal to 20% of the average thickness of the prepreg: (A) urethane particles having tan δ of 0.15 or more at 10° C. and having a three-dimensional cross-linked structure, (B) a first epoxy resin composition, and (C) reinforcing fiber. The present invention provides a fiber-reinforced composite material which excels in rigidity, strength, and vibration damping properties, and a prepreg which is suitably used for production thereof, and also provides methods for production thereof.
摘要:
A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2).(1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000.(2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
摘要:
A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2).(1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000.(2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
摘要:
A method of controlling the criticality of a nuclear fuel cycle facility includes steps of producing a reactor fuel by adding less than 0.1% by weight of gadolinia to a uranium dioxide powder with a uranium enrichment of greater than 5% by weight and controlling the effective neutron multiplication factor of a uranium dioxide system in a step of handling the reactor fuel to be less than or equal to the maximum of the effective neutron multiplication factor of a uranium dioxide system with a uranium enrichment of 5% by weight.
摘要:
Provided is an electrically conductive conjugate fiber formed by conjugating an electrically conductive layer (A) including 60 to 80% by weight of a thermoplastic resin and 20 to 40% by weight of electrically conductive particles and a protective layer (B) including 50 to 95% by weight of polyethylene terephthalate and 5 to 50% by weight of polyethylene-2,6-naphthalate, wherein the fiber has a degree of elongation (DE) of 100 to 350%. This provides an electrically conductive conjugate fiber which exhibits a small change with time in physical properties such as a degree of elongation or boiling water shrinkage during its transportation or storage, while having a certain degree of elongation.
摘要:
A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
摘要:
Embodiments disclosed herein include a structure comprising an adherend and an adhesive composition, wherein the adhesive composition comprises at least a thermosetting resin, a curing agent, and an interfacial material, wherein the adherend is suitable for concentrating the interfacial material in an interfacial region between the adherend and the adhesive composition upon curing of the adhesive composition; a method of manufacturing a composite article by curing the adhesive composition and a reinforcing fiber; and a method of manufacturing an adhesive bonded joint comprising applying the adhesive composition to a surface of one of the two or of different kinds the adherend, and curing the adhesive composition to form an adhesive bond between the adherends. The resulting interfacial region, viz., the reinforced interphase, is reinforced by one or more layers of the interfacial material such that substantial improvements in bond strength and fracture toughness are observed.
摘要:
A first intensity Az expressed as Az=az×Eα, a first reference intensity A0 expressed as A0=a0×Eα, a second intensity Bz expressed as Bz=bz×E, and a second reference intensity B0=b0×E, are evaluated. The first intensity and the first reference intensity are of radioactive nuclides generated by a neutron capture reaction of a heavy nuclide or a fission product nuclide. The second intensity and the second reference intensity are of radioactive fission product nuclides except nuclides generated by a neutron capture reaction. The reference intensities are measured where the void fraction is known. Also a correlation curve of (az/a0) and a void fraction is evaluated. Finally an axial void fraction distribution is evaluated based on the value of (az/a0) and the correlation curve.
摘要:
A prepreg containing components (A) to (C) defined below, wherein component (A) is placed on one surface or both surfaces of a layer comprising components (B) and (C), 90% or more by area of component (A) being present in a region(s) extending from the surface(s) of the resulting prepreg containing components (A) to (C) to a depth equal to 20% of the average thickness of the prepreg: (A) urethane particles having tan δ of 0.15 or more at 10° C. and having a three-dimensional cross-linked structure, (B) a first epoxy resin composition, and (C) reinforcing fiber. The present invention provides a fiber-reinforced composite material which excels in rigidity, strength, and vibration damping properties, and a prepreg which is suitably used for production thereof, and also provides methods for production thereof.