摘要:
A chalcogenide material and chalcogenide memory device having less stringent requirements for formation, improved thermal stability and/or faster operation. The chalcogenide materials include materials comprising Ge, Sb and Te in which the Ge and/or Te content is lean relative to the commonly used Ge2Sb2Te5 chalcogenide composition. Electrical devices containing the instant chalcogenide materials show a rapid convergence of the set resistance during cycles of setting and resetting the device from its as-fabricated state, thus leading to a reduced or eliminated need to subject the device to post-fabrication electrical formation prior to end-use operation. Improved thermal stability is manifested in terms of prolonged stability of the resistance of the device at elevated temperatures, which leads to an inhibition of thermally induced setting of the reset state in the device. Significant improvements in the 10 year data retention temperature are demonstrated. Faster device operation is achieved through an increased speed of crystallization, which acts to shorten the time required to transform the chalcogenide material from its reset state to its set state in an electrical memory device.
摘要:
A chalcogenide material and chalcogenide memory device exhibiting fast operation (short set pulse times) over an extended range of reset state resistances. Electrical devices containing the instant chalcogenide materials permit rapid transformations from the reset state to the set state for reset and set states having a high resistance ratio. The instant devices thus provide for high resistance contrast and improved readability of memory states while preserving fast operational speeds for the device. The chalcogenide materials include materials comprising Ge, Sb and Te in which the Ge and/or Te content is lean relative to the commonly used Ge2Sb2Te5 chalcogenide composition. In one embodiment, the atomic concentration of Ge is between 11% and 22%, the atomic concentration of Sb is between 22% and 65%, and the atomic concentration of Te is between 28% and 55%. In a preferred embodiment, the atomic concentration of Ge is between 15% and 18%, the atomic concentration of Sb is between 32% and 35%, and the atomic concentration of Te is between 48% and 51%.
摘要:
By using a resistive film as a shunt, the snapback exhibited when transitioning from the reset state or amorphous phase of a phase change material, may be reduced or avoided. The resistive film may be sufficiently resistive that it heats the phase change material and causes the appropriate phase transitions without requiring a dielectric breakdown of the phase change material.
摘要:
By using a resistive film as a shunt, the snapback exhibited when transitioning from the reset state or amorphous phase of a phase change material, may be reduced or avoided. The resistive film may be sufficiently resistive that it heats the phase change material and causes the appropriate phase transitions without requiring a dielectric breakdown of the phase change material.
摘要:
An electronic device including a planar segmented contact. A method for forming the device includes depositing a first insulator on a substrate, forming an opening in the first insulator, disposing a conductive material in the opening where the conductive material defines two or more conductive regions, forming a second insulator over the conductive layer, removing a portion of the second insulator to expose less than all of the conductive regions, recessing at least one of the exposed conductive regions, forming a third insulator over the recessed conductive region, and planarizing to expose at least one of the non-recessed conductive regions without exposing a recessed conductive region. An electrically stimulable material may then be formed over an exposed non-recessed conductive region.
摘要:
A phase change memory may be formed using a chalcogenide material that includes selenium. The inclusion of selenium improves the heat stability of the resulting memory device. The chalcogenide may also be a lean germanium composition.
摘要:
By using a resistive film as a shunt, the snapback exhibited when transitioning from the reset state or amorphous phase of a phase change material, may be reduced or avoided. The resistive film may be sufficiently resistive that it heats the phase change material and causes the appropriate phase transitions without requiring a dielectric breakdown of the phase change material.
摘要:
A minimal-duration current pulse is employed to program a programmable resistance memory to a high-resistance, RESET state. Although the duration and magnitude of RESET programming pulses in accordance with the principles of the present invention may vary depending, for example, upon the composition and structure of a cell, a method and apparatus in accordance with the principles of the present invention employs the briefest pulse practicable for a given cell or array of cells.
摘要:
A lateral phase change memory includes a pair of electrodes separated by an insulating layer. The first electrode is formed in an opening in an insulating layer and is cup-shaped. The first electrode is covered by the insulating layer which is, in turn, covered by the second electrode. As a result, the spacing between the electrodes may be very precisely controlled and limited to very small dimensions. The electrodes are advantageously formed of the same material, prior to formation of the phase change material region.
摘要:
A phase change memory may be formed of two vertically spaced layers of phase change material. An intervening dielectric may space the layers from one another along a substantial portion of their lateral extent. An opening may be provided in the intervening dielectric to allow the phase change layers to approach one another more closely. As a result, current density may be increased at this location, producing heating.