Abstract:
A method for manufacturing a blade, the method includes casting a nickel alloy blade precursor having an airfoil and a root. The airfoil and the root are solution heat treating differently from each other. After the solution heat treating, the root is wrought processed. After the wrought processing, an exterior of the root is machined.
Abstract:
A method for joining engine components includes positioning a first plurality of thermal protection structures across a thermal protection space between a first thermal protection surface and a second thermal protection surface. The first and second engine components are locally joined by forming a first plurality of transient liquid phase (TLP) or partial transient liquid phase (PTLP) bonds along corresponding ones of the first plurality of thermal protection structures between the first thermal protection surface and the second thermal protection surface. The second thermal protection surface is formed from a second surface material different from a first surface material of the first thermal protection surface.
Abstract:
Aspects of the disclosure are directed to an analysis of a material of a component. A radiation source is activated to transmit radiation to the component. A beam pattern is obtained based on the component interfering with the radiation. The beam pattern is compared to a reference beam pattern. An anomaly is detected to exist in the material when the comparison indicates a deviation between the beam pattern and the reference beam pattern.
Abstract:
A method for joining engine components includes positioning a first plurality of thermal protection structures across a thermal protection space between a first thermal protection surface and a second thermal protection surface. The first and second engine components are locally joined by forming a first plurality of transient liquid phase (TLP) or partial transient liquid phase (PTLP) bonds along corresponding ones of the first plurality of thermal protection structures between the first thermal protection surface and the second thermal protection surface. The second thermal protection surface is formed from a second surface material different from a first surface material of the first thermal protection surface.
Abstract:
An investment casting apparatus includes a furnace having an opening, a mold support, and a multi-axis actuator connected with the mold support and configured to retract the mold support from the opening with multiple-axis motion. An investment casting method includes withdrawing, with multiple-axis motion, a mold through the opening of the furnace to solidify a molten metal- or metalloid-based material in the mold. The apparatus and method can be used to form a cast article that has a body formed of the metal- or metalloid-based material. The body has a multi-textured, single crystal microstructure.