摘要:
A semiconductor fabrication process includes forming a gate electrode (120) overlying a gate dielectric (110) overlying a semiconductor substrate (102). First spacers (124) are formed on sidewalls of the gate electrode (120). First s/d trenches (130) are formed in the substrate (102) using the gate electrode (120) and first spacers (124) as a mask. The first s/d trenches (130) are filled with a first s/d structure (132). Second spacers (140) are formed on the gate electrode (120) sidewalls adjacent the first spacers (124). Second s/d trenches (150) are formed in the substrate (102) using the gate electrode (120) and the second spacers (140) as a mask. The second s/d trenches (150) are filled with a second s/d structure (152). Filling the first and second s/d trenches (130, 150) preferably includes growing the s/d structures using an epitaxial process. The s/d structures (132, 152) may be stress inducing structures such as silicon germanium for PMOS transistors and silicon carbon for NMOS transistors.
摘要:
A vacancy injecting process for injecting vacancies in template layer material of an SOI substrate. The template layer material has a crystalline structure that includes, in some embodiments, both germanium and silicon atoms. A strained silicon layer is then epitaxially grown on the template layer material with the beneficial effects that straining has on electron and hole mobility. The vacancy injecting process is performed to inject vacancies and germanium atoms into the crystalline structure wherein germanium atoms recombine with the vacancies. One embodiment, a nitridation process is performed to grow a nitride layer on the template layer material and consume silicon in a way that injects vacancies in the crystalline structure while also allowing germanium atoms to recombine with the vacancies. Other examples of a vacancy injecting processes include silicidation processes, oxynitridation processes, oxidation processes with a chloride bearing gas, or inert gas post bake processes subsequent to an oxidation process.
摘要:
A process for forming a semiconductor device. The process includes forming a template layer for forming a layer of strained silicon. In one example a layer of graded silicon germanium is formed where the germanium is at a higher concentration at the lower portion and at a lower concentration at a top portion. When subject to a condensation process, the germanium of the top portion of the layer diffuses to a remaining portion of the silicon germanium layer. Because the silicon germanium layer has a higher concentration of germanium at lower portions, germanium pile up after condensation may be reduced at the upper portion of the remaining portion of the silicon germanium layer.
摘要:
A process for forming strained semiconductor layers. The process include flowing a chlorine bearing gas (e.g. hydrogen chloride, chlorine, carbon tetrachloride, and trichloroethane) over the wafer while heating the wafer. In one example, the chorine bearing gas is flowed during a condensation process on a semiconductor layer that is used as a template layer for forming a strain semiconductor layer (e.g. strain silicon). In other examples, the chlorine bearing gas is flowed during a post bake of the wafer after the condensation operation.
摘要:
A process for forming a strained semiconductor layer. The process includes implanting ions into a semiconductor layer prior to performing a condensation process on the layer. The ions assist in diffusion of atoms (e.g. germanium) in the semiconductor layer and to increase the relaxation of the semiconductor layer. After the condensation process, the layer can be used as a template layer for forming a strained semiconductor layer.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
摘要:
A semiconductor device (10) comprising a substrate (12) and an oxide layer (14) formed over the substrate is provided. The semiconductor device further includes a first semiconductor layer (16) having a first lattice constant formed directly over the oxide layer. The semiconductor device further includes a second semiconductor layer (26) having a second lattice constant formed directly over the first semiconductor layer, wherein the second lattice constant is different from the first lattice constant.
摘要:
A substrate includes a first region and a second region. The first region comprises a III-nitride layer, and the second region comprises a first semiconductor layer. A first transistor (such as an n-type transistor) is formed in and on the III-nitride layer, and a second transistor (such as a p-type transistor) is formed in and on the first semiconductor layer. The III-nitride layer may be indium nitride. In the first region, the substrate may include a second semiconductor layer, a graded transition layer over the second semiconductor layer, and a buffer layer over the transition layer, where the III-nitride layer is over the buffer layer. In the second region, the substrate may include the second semiconductor layer and an insulating layer over the second semiconductor layer, where the first semiconductor layer is over the insulating layer.
摘要:
A semiconductor device (10) comprising a substrate (12) and an oxide layer (14) formed over the substrate is provided. The semiconductor device further includes a first semiconductor layer (16) having a first lattice constant formed directly over the oxide layer. The semiconductor device further includes a second semiconductor layer (26) having a second lattice constant formed directly over the first semiconductor layer, wherein the second lattice constant is different from the first lattice constant.
摘要:
A process of forming an electronic device can include forming a patterned oxidation-resistant layer over a semiconductor layer that overlies a substrate, and patterning the semiconductor layer to form a semiconductor island. The semiconductor island includes a first surface and a second surface opposite the first surface, and the first surface lies closer to the substrate, as compared to the second surface. The process can also include forming an oxidation-resistant material along a side of the semiconductor island or selectively depositing a semiconductor material along a side of the semiconductor island. The process can further include exposing the patterned oxidation-resistant layer and the semiconductor island to an oxygen-containing ambient, wherein a first portion of the semiconductor island along the first surface is oxidized during exposing the patterned oxidation-resistant layer, the semiconductor island, and the oxidation-resistant material to an oxygen-containing ambient.