摘要:
A pixel circuit relating to an organic light emitting diode (OLED) is provided by the invention, and if the circuit configuration (5T1C or 6T1C) thereof collaborates with suitable operation waveforms, the current flowing through an OLED in the OLED pixel circuit is not be changed along with variation of a power supply voltage (Vdd) influenced by the IR drop, and is not be varied along with the threshold voltage (Vth) shift of a TFT used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display can be substantially improved.
摘要:
A display panel including a first substrate, a second substrate, a liquid crystal layer, a pixel structure array, a common electrode layer, and spacers is provided. The liquid crystal layer is disposed between the first substrate and the second substrate opposite thereto. The pixel structure array disposed on the first substrate is located between the liquid crystal layer and the first substrate and includes scan lines, data lines, active devices, and pixel electrodes. Each active device is connected to one scan line and one data line intersected therewith. Each pixel electrode crosses over one data line and one active device and is electrically connected to the corresponding one active device. The common electrode layer is disposed on the second substrate. The spacers disposed between the first substrate and the second substrate are located above the scan lines. The spacers are respectively located at centers of the pixel electrodes.
摘要:
A shift register comprises many stages, and each of stages comprises a first, a second and a third level control unit and a first and a second control unit is provided. The first and the second level control unit respectively provides a first clock signal and a voltage to an output terminal. The first driving unit and the level control unit are coupled to a first node. The first driving unit turns on and turns off the first level control unit in response to an input signal, a second control signal and a first control signal of the next stage. The second driving unit turns on and turns off the second level control unit in response to the first control signal. The third level control unit provides a first voltage to the output terminal in response to the second control signal and the first control signal.
摘要:
A shift register comprises many stages, and each of stages comprises a first, a second and a third level control unit and a first and a second control unit is provided. The first and the second level control unit respectively provides a first clock signal and a voltage to an output terminal. The first driving unit and the level control unit are coupled to a first node. The first driving unit turns on and turns off the first level control unit in response to an input signal, a second control signal and a first control signal of the next stage. The second driving unit turns on and turns off the second level control unit in response to the first control signal. The third level control unit provides a first voltage to the output terminal in response to the second control signal and the first control signal.
摘要:
A light sensing apparatus and a display device thereof are provided. The light sensing apparatus comprises a filtering device and a light sensing device. The filtering device filters off a part of the ambient light and outputs the other part of the ambient light. The light sensing device outputs a sensing signal according to the other part of the ambient light.
摘要:
A multi-domain liquid crystal display includes a plurality of first and second picture elements having polarities opposite to each other under the same frame of an inversion drive scheme. Each first picture element has an extension part positioned next to at least one side of the adjacent second picture element, and each second picture element has an extension part positioned next to at least one side of the adjacent first picture element.
摘要:
An organic light emitting diode (OLED) pixel circuit is provided by the invention. If a circuit configuration (5T2C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit may not be changed with a power supply voltage (Vdd) influenced by an IR drop, and may not be varied with a threshold voltage (Vth) shift of a thin-film-transistor (TFT) configured for driving the OLED. Accordingly, brightness uniformity of an OLED display applying the same can be substantially improved.
摘要:
A pixel circuit related to an organic light emitting diode (OLED) is provided, and if a circuit configuration (5T1C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit is not varied along with a threshold voltage (Vth) shift of a TFT used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display is substantially improved.
摘要:
A shift register has shift register units. The nth shift register unit includes first to third level control units and first and second driving units. The first and second level control units respectively provide a first clock signal and a first voltage to an output terminal. The first driving unit and the first level control unit are coupled to a first node, and a voltage on the first node is a first control signal. The first driving unit turns on and off the first level control unit in response to an input signal and second and third control signals. The second driving unit turns on and off the second level control unit in response to the first control signal. The third level control unit provides the first voltage to the output terminal in response to a front edge of the first control signal of the (n+2)th shift register unit.
摘要:
A bi-directional shift register includes N stages, wherein the mth stage among the N stages includes a node, an output end, first input circuit, second input circuit, and a shift register unit. N is a natural number greater than 1 and m is a natural number smaller than or equal to N. First control signal is measured on the node. The output end outputs an mth output signal. The first input circuit receives an m−1th output signal as a control signal and a power signal to accordingly generate an enabled first driving signal to the node in first period. The second input circuit receives an m+1th output signal as a control signal and a power signal to accordingly generate an enabled second driving signal to the node in second period. Controlled by the first control signal, the shift register unit generates an mth output signal in third period.