Thermoplastic Polymer Particles and Methods of Production and Uses Thereof

    公开(公告)号:US20210070993A1

    公开(公告)日:2021-03-11

    申请号:US16946622

    申请日:2020-06-30

    Abstract: Thermoplastic polymer particles can be produced that comprise a thermoplastic polymer and an emulsion stabilizer (e.g., nanoparticles and/or surfactant) associated with an outer surface of the particles. The nanoparticles may be embedded in the outer surface of the particles. Melt emulsification can be used to produce said particles. For example, a method may include: mixing a mixture comprising a thermoplastic polymer, an carrier fluid that is immiscible with the thermoplastic polymer, and the emulsion stabilizer at a temperature greater than a melting point or softening temperature of the thermoplastic polymer and at a shear rate sufficiently high to disperse the thermoplastic polymer in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the thermoplastic polymer to form the thermoplastic polymer particles; and separating the thermoplastic polymer particles from the carrier fluid.

    NANOPARTICLE-COATED ELASTOMERIC PARTICULATES AND METHODS FOR PRODUCTION AND USE THEREOF

    公开(公告)号:US20210070953A1

    公开(公告)日:2021-03-11

    申请号:US16946626

    申请日:2020-06-30

    Abstract: Melt emulsification may be employed to form elastomeric particulates in a narrow size range when nanoparticles are included as an emulsion stabilizer. Such processes may comprise combining a polyurethane polymer and nanoparticles with a carrier fluid at a heating temperature at or above a melting point or a softening temperature of the polyurethane polymer, applying sufficient shear to disperse the polyurethane polymer as liquefied droplets in the presence of the nanoparticles in the carrier fluid at the heating temperature, cooling the carrier fluid at least until elastomeric particulates in a solidified state form, and separating the elastomeric particulates from the carrier fluid. In the elastomeric particulates, the polyurethane polymer defines a core and an outer surface of the elastomeric particulates and the nanoparticles are associated with the outer surface. The elastomeric particulates may have a D50 of about 1 μm to about 1,000 μm.

    EMULSION AGGREGATION PROCESS
    24.
    发明申请

    公开(公告)号:US20200301296A1

    公开(公告)日:2020-09-24

    申请号:US16355938

    申请日:2019-03-18

    Abstract: Described herein is a method for manufacturing a low gloss toner. The method includes mixing a resin, a colorant and an optional wax in water to form an emulsion. The emulsion is heated in the presence of a polyion coagulant to form a plurality of aggregated particles, wherein the heating is to a temperature of below the glass transition temperature of the resin. Trisodium citrate dihydrate is added to the heated emulsion in amount of from 0.4 weight percent to about 1.0 percent by weight based on of a total weight of reagents while stirring, wherein the trisodium citrate dihydrate. The aggregated particles are heated to a temperature above the glass transition temperature of the resin to form toner particles have a volume average particle diameter of from 4.3 microns to 4.9 microns.

    CATION EXCHANGE MEMBRANES FROM STRUCTURED ORGANIC FILMS AND METHODS THEREOF

    公开(公告)号:US20240115975A1

    公开(公告)日:2024-04-11

    申请号:US17946003

    申请日:2022-09-15

    CPC classification number: B01D15/363 B01D15/361 B01D69/10 B01J47/12

    Abstract: A structured organic film (SOF) is disclosed. The structured organic film also includes a plurality of segments, a plurality of linkers, and optionally a plurality of capping segments, where at least one or more capping segments may include at least one anionic species. Implementations of the structured organic film (SOF) include where all of the plurality of linkers are bonded to the plurality of segments. A concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. At least one of the plurality of capping segments may include a hydroxysulfonic acid, a hydroxysulfinic acid, or a combination thereof. The structured organic film (SOF) has an ion exchange capacity (IEC) of from about 0.25 meq/g to about 5.00 meq/g.

Patent Agency Ranking