Abstract:
To optimize the performance of DSL modems in the same cable bundle, the size and position of the group of subcarriers used for transmission is intelligently selected when the bit rate necessary for making the transmission is less than the total available bandwidth provided by all subcarriers. By intelligently selecting a minimum number of subcarriers for Digital Multi-tone (DMT) signal transmission, a reduction in line driver power consumption is effectuated. Additionally, by intelligently selecting the position of the groups of subcarriers within the total available subcarriers, near-end crosstalk (NEXT) noise within the cable bundle may be minimized.
Abstract:
To improve the performance of DSL modems, a DSL duplexing ratio for a new communication is selected according to the communications needs of an application. A required upstream and downstream bit rate for application communications is determined. From the ratio of these bit rates, a desired duplexing ratio is calculated. The operation of the modem is then adapted to choose a duplexing ratio that approximates the desired duplexing ratio for the application. To optimize modem operation, the size and position of the upstream and downstream bandwidths used for transmission are intelligently selected when the bit rate necessary for making the transmission is less than the total available bandwidth provided by the chosen duplexing ratio. By intelligently selecting a minimum number of subcarriers for Digital Multi-tone (DMT) signal transmission, a reduction in line driver power consumption is effectuated. Additionally, by intelligently selecting the position of the used bandwidth within the total available bandwidth, near-end crosstalk (NEXT) noise may be minimized.
Abstract:
To optimize the performance of DSL modems in the same cable bundle, the size and position of the bandwidth used for transmission is intelligently selected when the bit rate necessary for making the transmission is less than the total available bandwidth. By intelligently selecting a minimum number of subcarriers for Digital Multi-tone (DMT) signal transmission, a reduction in line driver power consumption is effectuated. Additionally, by intelligently selecting the position of the used bandwidth within the total available bandwidth, near-end crosstalk (NEXT) noise within the cable bundle may be minimized.
Abstract:
A method and system for communication of information in OFDM format are disclosed. The method employs multi-symbol encapsulation (MSE), wherein multiple OFDM symbols are grouped together in cyclic frames having a single cyclic guard portion, for example a cyclic prefix, with multiple OFDM symbols sandwiched between each two consecutive cyclic guard portions. All OFDM symbols of one frame are equalized together at the receiver in a frequency domain using a single DFT/IDFT operation sequence. Embodiments of the MSE OFDM system are disclosed enabling high bandwidth efficiency, high tolerance to carrier frequency offset and low peak-to-average power ratio.
Abstract:
The present invention discloses the method and apparatus for topology discovery enabled intrusion detection. In information and communications technology (ICT) systems, end devices are organized into subnets that are communicated with the system center through the multi-service gateways. Any intrusion can incur the variations of the communications environments and the subnet topologies. The potential external intruding devices are detected by the varied communications environments and identified by the difference between the original and new subnet topologies constructed by the topology discovery method. The information of potential external intruding devices is sent to the system center for device authentication. If passed, the device is kept associated and the system topology is updated with the newly discovered subnet topology. If failed, the device is enforced to disassociate, and an enhanced secure mode is triggered where the messages communicated over the intruded subnet are encrypted.
Abstract:
Methods and systems for scheduling successive transmissions in a wireless local area network (WLAN). An Access Point (AP) can generate a control signal that includes an identifier field for indicating that previous resource allocation from a previous transmission is to be repeated, and therefore the control signal itself does not contain resource allocation information. One or more stations (STAs) can receive the control signal and can use the previous resource allocation information stored in their respective memory to perform the transmission. The resource allocation can include three-dimensional (3D) resource allocation, which refers to time, frequency and space-domain multiplexing. Because the control signal has the identifier field, the AP can reduce network load and free resources for payload data or other traffic.
Abstract:
Methods and systems that enable payload data to be spread over a number of a plurality of sub-carriers for wireless transmissions between Access Points (AP) and stations (STA) in a WLAN. The AP receives each STA's status information, and controls an amount of spreading of the payload data that can flexibly and variably takes into account the desired amount of peak power consumption, the required data rate, and the channel conditions. Based on these factors, the AP determines a number of sub-carriers for each STA that will be used to carry the spread payload data. Example embodiments can address high power peak consumption, data rate inflexibility and inefficient spectrum communication as found in conventional wireless systems.
Abstract:
The present invention is an integrated wireless system with multiple functionalities including robust (indoor/outdoor) position location, mobile receiver tracking and adaptive broadband communication. The present invention may be an adaptive position location system for local and indoor applications with improved accuracy, flexibility and security. The self-calibration technique of the present invention may cause, the position location system to be easily deployed. A master station may communicate with and control two or more slave stations and one or more user devices and thereby determine the position of a user device and track that user device, utilizing location reference sets, in accordance with the location of the master station and communication between the slave stations and the master station. The locationing operation of the present invention may be initiated by the user device.
Abstract:
A method for identifying a transmitter in a digital broadcasting system includes: receiving a broadcast signal in which a TxID sequence for identification of a transmitter is embedded; correlating the received broadcast signal with a plurality of elementary code sequences of a pseudo-random sequence sequentially; and identifying the transmitter by using the correlation results.
Abstract:
The present invention is an integrated wireless system with multiple functionalities including robust (indoor/outdoor) position location, mobile receiver tracking and adaptive broadband communication. The present invention may be an adaptive position location system for local and indoor applications with improved accuracy, flexibility and security. The self-calibration technique of the present invention may cause, the position location system to be easily deployed. A master station may communicate with and control two or more slave stations and one or more user devices and thereby determine the position of a user device and track that user device, utilizing location reference sets, in accordance with the location of the master station and communication between the slave stations and the master station. The locationing operation of the present invention may be initiated by the user device.