Abstract:
Ink jet printing apparatus accommodating printing mode control for printing an output image on a receiver medium in response to an input image file having a plurality of pixel values. The printing mode is selected in such a manner that image artifacts are eliminated without excessively increasing printing time or ink laydown. The apparatus comprises a printhead and at least one nozzle integrally connected to the printhead, which nozzle is capable of ejecting an ink droplet therefrom. The apparatus also comprises a waveform generator associated with the nozzle for generating an electronic waveform to be supplied to the nozzle, so that the nozzle ejects the ink droplet in response to the waveform supplied thereto. In addition, a printer mode look-up table is also provided for storing a printing mode assigned to the waveform. A calibrator is connected to the first calibrator and is also associated with the waveform generator for adjusting the electronic waveform. An image halftoning unit is connected to the second calibrator for halftoning the calibrated image file in order to generate a halftoned image file having the pixel value defined by the waveform serial number. All the pixels are obtained without increasing the number of printing passes.
Abstract:
A microfluidic printing apparatus for transferring ink to a receiver includes at least one ink reservoir; a structure defining a plurality of chambers arranged so that the chambers form an array with each chamber being arranged to form an ink pixel; a plurality of microchannels connecting the reservoir to a chamber; and a plurality of microfluidic pumps each being associated with a single microchannel for supplying ink from an ink reservoir through a microchannel for delivery to a particular chamber. Air is delivered to isolate ink in the chamber so that a predetermined amount of ink in the chamber can be transferred to a receiver, and the microfluidic pumps are operated for delivering the predetermined amount of ink to each chamber.
Abstract:
A process of forming a dye transfer image comprising:a) imagewise-heating a dye-donor element comprising a support having thereon a dye layer comprising a dye dispersed in a polymeric binder, the dye being a deprotonated cationic dye which is capable of being reprotonated to a cationic dye having a N-H group which is part of a conjugated system,b) imagewise transferring the dye to a dye image-receiving layer of a dye-receiver element which contains acid moieties capable of reprotonating the deprotonated cationic dye, andc) subjecting the dye-receiver element to heat from a heat source immediately prior to, during, or after the imagewise transfer of the dye.
Abstract:
A platen-driven thermal dye printer mechanism (1), and more particularly to a cone-shaped scuff roller (7) which aligns a dye print receiver media sheet (2) with the receiver guide wall (8) during printing in a reciprocating direction (5). Using at least one conical shaped scuff roller (7) at one end of a platen roller (4) to transport the precut dye receiver media (2). The conical scuff roller (7) presses the back surface of the dye receiver media (2) against the non-imaging margin of the thermal dye printer mechanism (1). The invention uses a smooth guiding plate (28) and platen (4) thus, preventing scratches on the front surface of the receiver media (2). The invention is not subject to costly breakdowns, in that it uses the clockwise and counter-clockwise rotation of the platen (4) to provide perfect alignment of the receiver media (2) and printer head (9).
Abstract:
Apparatus for printing labels onto circular discs of predetermined diameter includes a linear printhead having a length equal to at least the diameter of the discs to be printed. A carrier has a planar surface with a circular recess into which a compact disc can be tightly inserted. The recess is of a depth substantially equal to the thickness of the disc to be printed, whereby the planar surface and a surface of an inserted disc form a substantially flat surface. The carrier is formed of a substrate and a member which defines the outer boundary of the recess. The substrate is at least partially formed of an elastic material having a compliance selected so as to provide a pressure on the printhead optimal for dye transfer. A second rigid member fits into a center hole in the inserted compact disc.
Abstract:
A resistive thermal printer has a platen drive mechanism which includes (1) a thermal printhead having an array of selectively-activatable thermal elements and (2) a rotatably-driven platen roller opposed to the printhead and forming a nip with the printhead through which a receiver medium is driven by the platen roller while the thermal elements are selectively activated. The platen roller has an inner core and an outer sleeve formed of a heat shrunk material. The platen roller includes a compliant layer below the outer sleeve.
Abstract:
An ink jet printing ink composition is disclosed for use with an ink jet printing apparatus comprising a printhead, an ink delivery system adapted to provide the ink to the printhead, and a sensor associated with the ink delivery system adapted to produce a signal which is characteristic of the concentration of a label material in a printing ink, where said signal is used to indicate the appropriateness of using a particular printing ink. The ink composition comprises a carrier, a colorant, and a predetermined concentration of a distinct label material, the weight ratio of the label material to the colorant being less than 1. The label material may be easily detected by a sensor associated with the ink delivery system.
Abstract:
The invention provides a radiation-sensitive silver halide emulsion comprisingsilver halide grains including tabular grains(a) having {111} major faces(b) containing greater than 70 mole percent bromide, based on silver,(c) accounting for greater than 90 percent of total grain projected area,(d) exhibiting an average equivalent circular diameter of at least 0.7 .mu.m,(e) exhibiting an average thickness of less than 0.07 .mu.m, and(f) having latent image forming chemical sensitization sites on the surfaces of the tabular rains, anda spectral sensitizing dye adsorbed to the surfaces of the tabular grains,wherein the surface chemical sensitization sites include at least one silver salt epitaxially located on said tabular rains and wherein said grains further comprise a mercapto compound represented by Formula III ##STR1## where R.sup.1 is an aliphatic or aromatic radical containing up to 20 carbon atoms.
Abstract:
An improved spectrally sensitized ultrathin tabular grain emulsion is disclosed in which tabular grains (a) having {111} major faces, (b) containing greater than 70 mole percent bromide and at least 0.25 mole percent iodide, based on silver, (c) accounting for greater than 90 percent of total grain projected area, (d) exhibiting an average equivalent circular diameter of at least 0.7 .mu.m, (e) exhibiting an average thickness of less than 0.07 .mu.m, and (f) having latent image forming chemical sensitization sites on the surfaces of the tabular grains, are spectrally sensitized. The speed-granularity relationship of the emulsion is improved by employing in forming the surface chemical sensitization sites at least one silver salt epitaxially located on tabular grain surface sites that contain increased iodide concentrations.A photographic element is disclosed comprised of a support, a first silver halide emulsion layer coated on the support and sensitized to produce a photographic record when exposed to specular light within the minus blue visible wavelength region of from 500 to 700 nm, a second silver halide emulsion layer capable of producing a second photographic record coated over the first silver halide emulsion layer to receive specular minus blue light intended for the exposure of the first silver halide emulsion layer, the second silver halide emulsion layer being capable of acting as a transmission medium for the delivery of at least a portion of the minus blue light intended for the exposure of the first silver halide emulsion layer in the form of specular light, wherein the second silver halide emulsion layer is comprised of the improved spectrally sensitized ultrathin tabular grain emulsion of the invention.The ultrathin tabular grain emulsions with silver salt epitaxy chemical sensitization have been observed to produce larger than expected speed increases, to produce higher than expected contrasts, to be unexpectedly specularly transmissive and therefore compatible with forming sharp photographic images in underlying emulsion layers, to exhibit a higher percentage of total light absorption in the wavelength region of maximum absorption by the spectral sensitizing dye or dyes employed, and to exhibit a surprising tolerance of inadvertent manufacturing variances.
Abstract:
A process is disclosed for the precipitation of a silver halide emulsion containing host grains having {100} crystal faces that are sensitized by the deposition of protrusions at the intersections of the {100} crystal faces. Protrusion growth is achieved by undertaking final silver introduction in the presence of a benzothiazolium site director containing a 5-position electron withdrawing ring substituent adsorbed to the {100} crystal faces of the grains being grown.