Abstract:
An LCD substrate is used to prevent polyimide from unevenly distributing during heat and leveling processes. A portion of dielectric layers on data lines in transmissive regions is removed to form channels, which penetrate the dielectric layers between two adjacent transmissive regions. In other words, dielectric layer has a second thickness corresponding to the channels. Polyimide is distributed to all of transmissive regions evenly via these channels. There is a wall having a fifth thickness between a transmissive region and accordingly neighboring with reflective region to prevent polyimide distributing from the reflective region to the transmissive region because of the different thickness of the dielectric layer in the transmissive regions and the reflective regions. Thereof polyimide distributes evenly among transmissive regions and reflective regions to form a uniform alignment film because of these channels and walls. Then the alignment of the liquid crystal molecules is absolutely controlled to improve and maintain the quality of LCD.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
In a process of forming a LCD cell structure, an electrode layer provided with a recessed portion is formed over a substrate, and a transparent dielectric layer is formed to cover the recessed portion of the pixel electrode layer. The recessed portion of the electrode layer acts to distort an electric field created in the liquid crystal of the LCD system for image displaying, while the transparent dielectric layer eliminates the boundary conditions created by the concavity of the recessed portion of the electrode layer.
Abstract:
An electrode structure for use in a transflective liquid crystal display device having a plurality of pixels is disclosed. Each pixel has a reflective region and a transmissive region. The electrode structure at least comprises a first transparent electrode, a reflective electrode and a second transparent electrode. The first transparent electrode is disposed within the transmissive region, while the reflective electrode and the second transparent electrode formed above the reflective electrode are disposed within the reflective region. The area of the second transparent electrode is smaller than the area of the reflective electrode.
Abstract:
A transflective liquid crystal display device implementing a color filter having various thicknesses. An insulating layer is formed on a lower substrate. A lower electrode is formed on the insulating layer, wherein the lower electrode has a transmissive portion and a reflective portion. An upper substrate opposing the lower substrate is provided, wherein a side of the upper substrate has a color filter having various thicknesses. A planarization layer is formed on the color filter, wherein the planarization layer is opposite to the lower substrate. An upper electrode is formed on the planarization layer. A liquid crystal layer is interposed between the upper and lower substrates.
Abstract:
A pixel electrode of a transflective LCD device includes a transparent electrode and a reflective electrode formed on a lower substrate, and a first common electrode and a second common electrode, which are independently formed on an upper substrate and positioned at positions corresponding to the transparent electrode and the reflective electrode, respectively.
Abstract:
A light channeling layer disposed adjacent to the bottom substrate of a transflective display to enhance the back-lighting efficiency. The transflective display has a transmissive area and a reflective area and the transmissive area has a transmission electrode. The light channeling layer comprises a plurality of light conduits, each of which is disposed behind a transmission electrode. The light conduit has a first aperture and a second aperture greater than the first aperture and the first aperture is positioned adjacent to the transmission electrode and a second aperture adjacent to the back substrate, so that light from a back-light source that enters into the light conduct through the second aperture is channeled to the transmission electrode through the first aperture.
Abstract:
A pixel device of a transflective-type LCD comprises an upper panel, a lower panel, a liquid crystal layer, and a liquid crystal film. The lower panel is assembled beneath the upper panel, and an upper surface of the lower panel is divided into a reflective region and a naked transmission region. The liquid crystal layer is interposed between the upper panel and the lower panel. The liquid crystal film is positioned above the liquid crystal layer to compensate possible retardation resulted from the liquid crystal layer.
Abstract:
An exemplary driving method is adapted for a bistable display device including a pixel array. The pixel array includes a plurality of first pixels and a plurality of second pixels arranged in a predetermined manner. The driving method includes the following steps of: during a first time period, providing the first pixels with a first pixel voltage for black insertion and providing the second pixels with a second pixel voltage different from the first pixel voltage; during a second time period following the first time period, providing the first pixels with the second pixel voltage for white insertion and maintaining the second pixels provided with the second pixel voltage for white insertion; and during a third time period following the second time period, initiating the first pixels to display a gray scale image and providing the second pixels with the first pixel voltage for black insertion.
Abstract:
A pixel structure includes a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, a common line, and a first capacitance upper electrode. The first and the second data lines intersect the scan line. The common line is parallel to the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. A difference between a first voltage of the first pixel electrode and a second voltage of the second pixel electrode constitutes a driving electric field to drive a display medium. The first capacitance upper electrode is electrically connected to the first pixel electrode and located above the common line to form a first storage capacitor.