Abstract:
Embodiments of the present invention are directed to systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system (100, 400, 600, 800, 900, 950) for performing Raman spectroscopy comprises a substrate (102) substantially transparent to a range of wavelengths of electromagnetic radiation and a plurality of nanowires (104, 602) disposed on a surface of the substrate. The nanowires are substantially transparent to the range of wavelengths of electromagnetic radiation. The system includes a material disposed on each of the nanowires. The electromagnetic radiation is transmitted within the substrate, into the nanowires, and emitted from the ends of the nanowires to produce enhanced Raman scattered light from molecules located on or in proximity to the material.
Abstract:
Raman-enhancing structures include a layer of dielectric material, a superlens configured to focus electromagnetic radiation having a wavelength greater than about 100 nanometers to a two-dimensional focal area having linear dimensions less than about 100 nanometers on a surface of the layer of dielectric material, and at least two nanoparticles comprising a Raman-enhancing material disposed proximate the focal area. Additional Raman-enhancing structures include a layer of dielectric material, a layer of conductive material, and at least two nanoparticles comprising a Raman-enhancing material disposed on a second, opposite surface of the layer of dielectric material. The layer of conductive material has a plurality of apertures therethrough that are arranged in a two-dimensional array. Methods for conducting Raman spectroscopy are performed using such structures and systems.
Abstract:
Raman spectroscopy systems include an analyte, a radiation source configured to emit incident radiation having a wavelength, and a detector that is capable of detecting only radiation having wavelengths within a detectable range that includes at least one wavelength corresponding to hyper Raman scattered radiation scattered by the analyte. The wavelength of the incident radiation is outside the detectable range. In particular systems, all wavelengths of radiation that are scattered in the direction of the detector impinge on the detector. Raman spectroscopy methods include providing an analyte and irradiating the analyte with incident radiation having a wavelength, providing a detector capable of detecting only wavelengths of radiation within a detectable range that does not include the wavelength of the incident radiation, and detecting Raman scattered radiation scattered by the analyte. A continuous path free of radiation filters may be provided between the analyte and the detector.
Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed on the substrate or apart from the substrate. The molecular analysis device also include a radiation receiver disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Wavelength-tunable radiation amplifying structures for Raman spectroscopy are disclosed that include resonant cavities having Raman signal-enhancing structures disposed therein. Systems that include the amplifying structures and methods of performing spectroscopic analysis using the structures and systems are also disclosed.
Abstract:
A nanochannel apparatus and method of fabrication provide an array of nanochannels with distal open or exposed ends formed in situ through a permanent support. A nanofluidic system includes the nanochannel apparatus, a fluidic interface, and a component interfaced to the nanochannel apparatus. The method includes encasing an array of nanowires in a support, and forming the array of nanochannels in situ in locations of the nanowires, such that distal ends of the nanochannels are exposed.
Abstract:
Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device comprises a molecule sensor and a molecule guide. The molecule sensor comprises a single electron transistor including a first terminal, a second terminal, and a nanogap or at least one quantum dot positioned between the first terminal and the second terminal. A nitrogenous material disposed on the at least one quantum dot is configured for an interaction with an identifiable configuration of a molecule. The molecule sensor develops an electronic effect responsive to the interaction. The molecule guide is configured for guiding at least a portion of the molecule substantially near the molecule sensor to enable the interaction.
Abstract:
A scattering spectroscopy nanosensor includes a nanoscale-patterned sensing substrate to produce an optical scattering response signal indicative of a presence of an analyte when interrogated by an optical stimulus. The scattering spectroscopy nanosensor further includes a protective covering to cover and protect the nanoscale-patterned sensing substrate. The protective covering is to be selectably removed by exposure to an optical beam incident on the protective covering. The protective covering is to prevent the analyte from interacting with the nanoscale-patterned sensing substrate prior to being removed.
Abstract:
An apparatus for performing SERS includes a substrate and flexible nano-fingers, each of the nano-fingers having a first end attached to the substrate, a free second end, and a body portion extending between the first end and the second end, in which the nano-fingers are arranged in an array on the substrate. The apparatus also includes an active material layer disposed on each of the second ends of the plurality of nano-fingers, in which the nano-fingers are to be in a substantially collapsed state in which the active layers on at least two of the nano-fingers contact each other under dominant attractive forces between the plurality of nano-fingers and in which the active material layers are to repel each other when the active material layers are electrostatically charged.
Abstract:
A luminescent chemical sensor integrated with at least one molecular trap. The luminescent chemical sensor includes at least one molecular trap and at least one metallic-nanofinger device integrated with at least one molecular trap. The molecular trap includes a plurality of electrodes that trap at least one analyte molecule. The metallic-nanofinger device includes a substrate, and a plurality of nanofingers coupled with the substrate. A nanofinger of the plurality includes a flexible column, and a metallic cap coupled to an apex of the flexible column. At least the nanofinger and a second nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with the analyte molecule. A method for using, and a chemical-analysis apparatus including the luminescent chemical sensor are also provided.