Abstract:
An apparatus for providing improved data compression may include an encoder comprising a quantizer for encoding input data and a side model. The quantizer may be trained with respect to high priority data among the input data and may be configured to partially encode the input data by encoding the high priority data. The side model may be trained jointly with the training of the quantizer and is configured to model low priority data among the input data.
Abstract:
An apparatus for providing improved color intensity mapping may include a processor. The processor may be configured to divide color intensity value byte data into high priority portions and low priority portions distributed as constellation points in a constellation matrix and to provide separation between each of the constellation points by assigning a unique mapping code to a plurality of the constellation points.
Abstract:
A device including a first electrical conductor, a second electrical conductor, dielectric material connecting the first and second conductors to each other, and an output or ground terminal section. The first electrical conductor has a first terminal section and a first plate section. The second electrical conductor includes a second terminal section and a second plate section. The second terminal section is connected to a first end of the second plate section. The second plate section includes a coil shaped section. The output terminal section is connected to an opposite second end of the second plate section. The dielectric material connects the first and second plate sections to each other.
Abstract:
An apparatus for providing instructions to a destination that is revealed upon arrival may include a processor. The processor may be configured to receive indications of context associated with a user, determine a destination for the user based on the context and user information, provide for a presentation of guidance instructions to guide the user to the destination, and reveal the destination to the user only when the user is proximate to the destination.
Abstract:
A system and a method for minimizing the functionality-gap between JAVA™ and native platforms while keeping the impact on each JAVA™ API static footprint as small as possible. A JAVA™ Runtime Dynamic Invocation API is used for low-level bridging between JAVA™ and C/C++, enabling the dynamic invocation of native C/C++ functions and C++ class/object methods from the JAVA™ side without adding any additional ad hoc implemented native code to the overall JAVA™ component implementation. Thereby, the need to write new native code when implementing a JAVA™ component that needs to invoke some native functionality is reduced.
Abstract translation:一种使JAVA™和本机平台之间的功能差距最小化的系统和方法,同时保持对每个JAVA™API静态足迹的影响尽可能小。 JAVA™运行时动态调用API用于JAVA™和C / C ++之间的低级桥接,支持从JAVA™方面动态调用本机C / C ++函数和C ++类/对象方法,而无需添加任何额外的特别实现 本地代码实现了整个JAVA™组件。 因此,在实现需要调用某些本机功能的JAVA™组件时,需要编写新的本机代码。
Abstract:
An apparatus includes least one processor and at least one memory including a computer program, the at least one memory and the computer program operable to, with the at least one processor, direct the apparatus at least to: identify a mobile station (MS) as a tunneling protocol endpoint; and configure an access bearer for the MS to prevent activation of a path management procedure for an entire data session; wherein the path management procedure comprises at least one of echo request messages, echo response messages, and version not supported messages.
Abstract:
In order to reduce the HS-SCCH overhead, a fixed time allocation approach could be used. In that case, the scheduling time of each VoIP user is semi-static and thus there is no need to transmit e.g. HS-SCCH toward the UE for the initial transmissions, if the UE knows when to receive data on the HS-DSCH and what transport format is used. There are at least two ways of implementing this: 1) HS-SCCH/E-DPCCH signalling to indicate parameters of a first transmission, with subsequent transmissions using the same parameters (and HS-SCCH/E-DPCCH always sent when changes needed), or 2) fixed allocation, RRC signalling used to allocate users and tell the default transport parameters.
Abstract:
A system, device, and method provide for the selection of a device to perform a service using context information for the device. The context information may be included in a request from a control point device to the device or may be included in a response from the device to the control point device. The context information provides additional information relative to the services provided by the device or relative to the device itself. For example, if the device is a camera, the camera may include for each photograph taken by the camera a date the photograph is taken, a time the photograph is taken, a location at which the photograph is taken, a subject matter of the photograph, a temperature at the photograph location, a photographer, etc in the context information. Additionally, the camera may include the current geographic location of the camera in the context information.
Abstract:
In one non-limiting aspect thereof the exemplary embodiments of this invention provide a method, a computer program product and a mobile station operable in accordance therewith to originate a request at the mobile station to terminate reception of a Multimedia Broadcast/Multimedia Service radio bearer; and to transmit the request to a wireless network that is the source of the Multimedia Broadcast/Multimedia Service radio bearer. In another non-limiting aspect thereof the exemplary embodiments of this invention provide a method, a computer program product and a wireless network node operable in accordance therewith to receive a request from a mobile station to terminate reception of a Multimedia Broadcast/Multimedia Service radio bearer and, in response, to send the mobile station a PACKET TBF RELEASE message that includes an identification of the mobile station and a TBF_RELEASE_CAUSE value defined as Stop Receiving MBMS Radio Bearer.
Abstract:
A method for choosing channel coding and/or interleaving scheme is applied in a communication connection over a radio interface between a terminal and a base station of a cellular packet radio system. A certain decision-making device allocates channel coding and/or interleaving schemes to communication connections. A request message is communicated (to the decision-making device, indicating a certain set of Quality of Service parameters associated with a certain first communication connection. The set of Quality of Service parameters is mapped to a certain first channel coding and/or interleaving scheme as a part of the channel coding and/or interleaving scheme allocation made by the decision-making device. The first channel coding and/or interleaving scheme is communicated to the base station and the terminal for them to apply said first channel coding and/or interleaving scheme in the first communication connection.