Abstract:
Filter element for air conditioning unit comprising a textile substrate selected from woven fabric and nonwoven fabric, and a composition comprising graphene, in which said graphene is in the form of nano-platelets and is present in an amount from 2 to 20 g of graphene per square meter of textile substrate and is dispersed in a binding agent and applied uniformly on all said textile substrate by means of impregnation.
Abstract:
Method of treating a textile article by impregnation with a water dispersion of graphene nano-platelets in an impregnation bath comprising also a polymeric binder and an anti-migration and wetting agent. Graphene is fixed in the textile article to improve its thermal and electrical conductivity, as well as its filtering power and germ-blocking properties.
Abstract:
Textile article comprising a textile substrate to which graphene is applied in an amount from 0.5 to 20 g of graphene per square meter of textile substrate, wherein said graphene is dispersed in a polymeric binder and forms a thermal circuit heatable by exposure to electromagnetic radiation. There is also described a filter comprising said textile article, for example a face mask for personal health protection.
Abstract:
A shoe sole comprising an elastomeric composition comprising: (D) 100 phr of a mixture of rubbers comprising: i. from 40 to 70% by weight of an isoprene polymer; ii. from 20 to 50% by weight of polybutadiene; iii. from 10 to 40% by weight of an SBR having a glass transition temperature (Tg) from −60 to −40° C.; (E) from 50 to 100 phr of amorphous carbon black having a surface area greater than 85 m2/g measured with the ASTM D6556 method, and a dibutyl phthalate absorption index (DBPA) greater than 90 measured with the ASTM D2414 method; (F) from 1 to 30 phr of graphene nano-platelets, wherein at least 90% of said graphene nano-platelets has a side dimension (x, y) from 50 to 50000 nm and a thickness (z) of 0.34 to 50 nm, and wherein said graphene nano-platelets have a C/O ratio ≥100:1.
Abstract:
Concentrated dispersion from 5 to 50% by weight of nanoparticles of graphene in water with a lateral size from 10 to 5000 nm and thickness from 0.34 to 30 nm. The production process comprises the dispersion in water of flakes of expanded graphite and the subsequent treatment with ultrasounds at an energy level of from 100 to 2000 W for a period from 1 to 100 hours.
Abstract:
The reactor is used for producing nano-particles of metal from volatile moieties in flow through mode. The reactor comprises at least a first feeder and a second feeder on one end of the vessel. The first feeder feeds the moiety in the form of an educt fluid into the reactor. This fluid is a mixture of metal moieties and a bearer fluid, entering the reactor in a vaporized state, in which the bearer fluid is used as a carrier gas. The second feeder is used as a radiator means to heat up the educt fluid within the reactor. By providing the heating fluid through the second feeder control over some environmental conditions like ambient temperature within the reactor is achieved and dissociation of the metal moieties under such controlled conditions leads to quantitative production of selected nano-particle morphologies.