Abstract:
A method for moving an instrument aim of a laparoscopy robot into a predeterminable position relative to a trocar placed in a patient is proposed. A spatial marker that can be localized from outside of the patient is applied to the trocar. The spatial position of the trocar is detected based on the spatial marker. The intended position of the instrument arm is established from the spatial position and the relative position. The actual position of the instrument arm is detected. The instrument arm is moved into the intended position based on the actual position, the intended position and an error minimization method.
Abstract:
A microprocessor controlled medical laser device that has a precise laser beam alignment system indicated by a series of sequentially color changing LEDS. The power management system adjusts the LED'S power input so as maximize battery life, increasing it by up to six times. It's alignment is enabled by a triaxial accelerometer that may be accurately calibrated horizontally or to a plethora of angles relative to the horizontal axis. It is shock resistant and times out to turn the laser off after a predetermined time.
Abstract:
A system for guiding an implant to an optimal placement within a patient includes a trajectory guide for guiding instruments along a selected trajectory and a trajectory fixation device for fixing the trajectory guide in a selected position. The trajectory guide defines a path configured to align with the selected trajectory. A movable support mounts the trajectory guide and selectively moves the trajectory guide to align the trajectory guide with the selected trajectory prior to fixing the trajectory guide in the selected position. After fixing the trajectory guide, instruments can be inserted along the trajectory through the path defined by the trajectory guide.
Abstract:
A support mechanism for a medical device may include an adjustable support that includes a plurality of elongate members movable relative to one another. The support mechanism may also include a bracket coupled to the adjustable support. The bracket may be adapted to be coupled to a first medical device that extends along a longitudinal axis. The support mechanism may also include an instrument holder that extends along a central axis. The instrument holder may be movably coupled to the bracket and adapted to be coupled to a second medical device. The bracket and the instrument holder may be oriented such that central axis of the instrument holder intersects the longitudinal axis at an angle.
Abstract:
The present invention provides an Image guided whole body stereotactic needle placement device with falling arc (3), comprising a circular base plate (1), a circular supporting ring (2) that is placed in the groove (8) in base plate (1) for supporting ring 2), a carrying arc (3) for needle guide (6) which has a foot (23) on either side, a fixing screw (4) which fixes the carrying arc (3) for the needle guide (6) with the supporting ring (2) and the base plate (1), a locking pin (29) which fixes the carrying arc (3) for needle guide (6) with the supporting ring (2) making the carrying arc (3) for the needle guide (6) perpendicular to the base plate (1) and a needle guide (6) that slides on the superior surface of the carrying arc (3) for the needle. This device is both CT and MR compatible, and can be used for precisely positioning a needle tip at a particular point inside the body. The needle can be used for taking tissue samples/delivering drugs/delivering energy to ablate tissues/aspirating cystic lesions. The patient has to hold breath while the needle is being passed into regions that move on respiration. This device has a falling arc that allows quick release of the needle after placement, so as to quickly allow free breathing for the patient. This feature allows utilisation of this device in chest and abdomen also. The device can be placed on the skin or on the exposed organ during surgery. The device is light weight, small and can be used in patients of any age.
Abstract:
A station for tomotactic-guided biopsy in prone includes a table with an aperture, and a tomosynthesis imaging system. A biopsy gun can be mounted on a stage arm assembly disposed below the table. The imaging system and stage arm assembly can be independently rotated and linearly repositioned in one or more dimensions, thereby allowing the tomotactic scan axis to be located relative to a breast being imaged.
Abstract:
A system for planning and performing a guided and free-handed transperineal prostate biopsy includes a transrectal ultrasound probe, an access needle configured to perforate a perineal access site of a patient, a biopsy gun, and a guide. The guide includes a sliding platform, stabilization bars, upper and lower mounts, and fasteners. The system and guide apparatus is used for locating a target area using the ultrasound probe, positioning the ultrasound and the access needle at respective designated points, precisely measuring the distance to a designated point, and obtaining specimens from a precise point in the prostate, wherein the method is performed free-handed, and multiple tissue or cell specimens may be obtained from the prostate through an initial access needle.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
A support mechanism for a medical device may include an adjustable support that includes a plurality of elongate members movable relative to one another. The support mechanism may also include a bracket coupled to the adjustable support. The bracket may be adapted to be coupled to a first medical device that extends along a longitudinal axis. The support mechanism may also include an instrument holder that extends along a central axis. The instrument holder may be movably coupled to the bracket and adapted to be coupled to a second medical device. The bracket and the instrument holder may be oriented such that central axis of the instrument holder intersects the longitudinal axis at an angle.
Abstract:
An MRI-guided interventional system for use with a patient and an interventional device includes a base, a trajectory guide frame, and a mounting device. The base is configured to be secured to a body of the patient. The trajectory guide frame includes a targeting cannula. The targeting cannula has an elongate guide bore extending axially therethrough, defining a trajectory axis, and being configured to guide placement of the interventional device. The trajectory guide frame is operable to move the targeting cannula relative to the base to position the trajectory axis to a desired intrabody trajectory to guide placement of the interventional device in vivo. A plurality of patient engagement structures are provided on the base and are configured to penetrate tissue of the body and to space the base apart from the tissue. The system further includes a plurality of fasteners configured to secure the base to the body.