Abstract:
An instrument guiding device featuring a base having an aperture for a catheter; one or more legs disposed on the base; a first plate and a second plate each extending upwardly from the base perpendicularly to each other, the second plate is pivotally attached to the base; a guide component having an inner channel adapted to receive the catheter, the first end of the guide component is pivotally attached to the second plate, the guide component can be pivoted toward sides of the second plate; a first scale disposed on the first plate, a second scale disposed on the second plate; reference markers on the second plate and on the guide component; and a temporary attachment means for holding the second plate in place with respect to the first plate and for holding the guide component in place with respect to the second plate.
Abstract:
A microprocessor controlled medical laser device that has a precise laser beam alignment system indicated by a series of sequentially color changing LEDS. The power management system adjusts the LED'S power input so as maximize battery life, increasing it by up to six times. It's alignment is enabled by a triaxial accelerometer that may be accurately calibrated horizontally or to a plethora of angles relative to the horizontal axis. It is shock resistant and times out to turn the laser off after a predetermined time.
Abstract:
A system for a controlled insertion and withdrawal of at least one electrode in the anatomy. The system can include a guide device and at least one electrode located within the guide device to at least one of record or stimulate an anatomy. The system can also include an indicator coupled to the electrode to indicate a position of a distal end of an electrode relative to the guide device.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
An MRI-guided interventional system for use with a patient and an interventional device includes a base, a trajectory guide frame, and a mounting device. The base is configured to be secured to a body of the patient. The trajectory guide frame includes a targeting cannula. The targeting cannula has an elongate guide bore extending axially therethrough, defining a trajectory axis, and being configured to guide placement of the interventional device. The trajectory guide frame is operable to move the targeting cannula relative to the base to position the trajectory axis to a desired intrabody trajectory to guide placement of the interventional device in vivo. A plurality of patient engagement structures are provided on the base and are configured to penetrate tissue of the body and to space the base apart from the tissue. The system further includes a plurality of fasteners configured to secure the base to the body.
Abstract:
A support mechanism for a medical device may include an adjustable support that includes a plurality of elongate members movable relative to one another. The support mechanism may also include a bracket coupled to the adjustable support. The bracket may be adapted to be coupled to a first medical device that extends along a longitudinal axis. The support mechanism may also include an instrument holder that extends along a central axis. The instrument holder may be movably coupled to the bracket and adapted to be coupled to a second medical device. The bracket and the instrument holder may be oriented such that central axis of the instrument holder intersects the longitudinal axis at an angle.
Abstract:
Methods, devices (such as computer readable media), and systems (such as computer systems) for performing movements of a tool of a medical robot along a single axis that are achieved by electronically limiting the medical robot's movement to produce movement of the tool along the single axis rather than mechanically restricting the medical robot's movement to produce the single axis movement. The tool's movement will be along the single axis even if a user is moving an input device linked to the medical robot in other axes during the single axis movement. In addition, techniques are disclosed for automating the single axis movement such that it can be programmed to stop at a target location and start at or near a second (e.g., starting) location, which is useful for a procedure such as a brain biopsy, breast biopsy or implantation, and such that a user can execute a command instructing the medical robot to perform the movement without the need for the user to manipulate an input device to cause real-time responsive movement of the medical robot.
Abstract:
Systems and method are disclosed whereby elongate medical instruments may be registered to adjacent tissue structures and other structures, and may be navigated and operated in a coordinated fashion to maximize ranges of motion, ease of use, and other factors. A method for registering an instrument relative to nearby structures may comprise moving a portion of the instrument between two in situ positions, tracking movement during this movement with both a kinematic model and also a localization sensor based configuration, determining the orientation of the tracked portion relative to both the instrument coordinate system used in the kinematic modeling and also a localization coordinate reference frame, and adjusting the orientation of the instrument coordinate reference frame to minimize the difference between determined orientations using the kinematic model and localization sensors. Methods and configurations for navigating coupled and registered instrument sets are also disclosed.
Abstract:
Systems for locating an optimal site within a brain of a patient for deep brain stimulation include a main cannula having an internal lumen, a guiding cannula having a bent distal end portion configured to pass through the lumen of the main cannula and guide a microelectrode into the brain, a depth adjustment mechanism configured to adjust an insertion depth of the guiding cannula, and a longitudinal angle adjustment device configured to adjust a longitudinal angle of the guiding cannula. The depth adjustment mechanism and longitudinal angle adjustment device adjust a position of the guiding cannula such that the microelectrode locates the optimal site for the deep brain stimulation.