Abstract:
A lithographic printing plate precursor, which comprises: a support; an image-recording layer; and a protective layer, in this order, wherein at least one of the image-recording layer and the protective layer comprises a phosphonium salt having a specific structure, and a lithographic printing process, which comprises: exposing a lithographic printing plate precursor; supplying an oil-based ink and a fountain solution comprising a phosphonium salt having a specific structure to the exposed lithographic printing plate precursor on a printing machine to remove an unexposed area of an image-recording layer; and conducting printing.
Abstract:
A lithographic printing plate precursor includes: a support; and a photosensitive layer containing a binder polymer containing a positively charged nitrogen atom in at least one of a main chain and a side chain of the binder polymer, a compound containing an ethylenically unsubstituted bond; and a radical polymerization initiator.
Abstract:
A lithographic printing plate precursor includes in the following order: a support; an image-recording layer containing (A) an infrared absorbing agent, (B) a polymerization initiator and (C) a polymerizable compound; and a protective layer, an unexposed area of the image-recording layer is capable of being removed with at least one of printing ink and dampening water on a printing machine, and the lithographic printing plate precursor contains a compound represented by the following formula (I): wherein R1 represents an alkyl, alkenyl or aryl group having from 6 to 36 carbon atoms which may have a substituent, R2 and R3 each independently represents a methyl group, an ethyl group, a hydroxyethyl group or a hydroxypropyl group, L represents a single bond or a divalent connecting group, and n represents an integer of from 0 to 11.
Abstract:
The present invention provides a planographic printing plate precursor, including: a support; and a photosensitive layer containing a polymerizable compound; an oxygen barrier layer; and a protective layer containing a filler (preferably an organic resin particle), the layers being formed in this order on the support. The present invention also provides a stack of planographic printing plate precursors, produced by stacking the planographic printing plate precursors with the photosensitive layer side outermost layer and the support side rear surface of the adjacent plate precursor in direct contact with each other.
Abstract:
An on-press ink and/or fountain solution developable lithographic printing plate comprising a photosensitive layer over an electrochemically grained, anodized, hydrophilically treated aluminum substrate with a reflection optical density of at least 0.30 is disclosed. The photosensitive layer is soluble or dispersible in ink and/or fountain solution and capable of hardening upon exposure to a laser having a wavelength of from 200 to 1200 nm. The plate is exposed with the laser off press or on press, and then on-press developed with ink and/or fountain solution. Such darker aluminum substrate in combination with the hydrophilic treatment allows fast press roll up, clean background, and good printing durability of the plate.
Abstract:
A polymer having a polymerizable group and an alkyleneoxy groups on side chains thereof, and a polymerizable composition containing the polymer. The polymerizable composition preferably contains a polymerizable compound and a polymerization initiator. Also provided is a planographic printing plate precursor having a polymerizable layer on a hydrophilic support, the polymerizable layer containing a polymer having a polymerizable on a side chain thereof. The planographic printing plate precursor can form an image without being subjected to an alkali development. An undercoat layer containing a specific copolymer may be provided between the support and the photopolymerizable layer.
Abstract:
The invention provides a planographic printing plate precursor having at least: a support; and an image recording layer that is provided on or above the support, the image recording layer containing at least: an infrared ray absorbing agent (A); a polymerization initiator (B); a polymerizable monomer (C); and a polymer compound (D) having, in a side chain thereof, at least one specific polymerizable functional group having a hydroxyl group; and following exposure of the planographic printing plate precursor, an unexposed portion of the image recording layer is removed with a gum solution. The invention further provides a plate making method including imagewise exposing the planographic printing plate precursor and developing the planographic printing plate precursor by processing the exposed planographic printing plate precursor with a gum solution so as to remove an unexposed portion of the image recording layer
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits excellent on-press developability, nonimage area fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a hydrophilic support and has thereon a photopolymerizable layer that contains at least one selected from the group consisting of a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a sulfonamide group and a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a cyclic structure derived from a maleimide. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A processing method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor comprising a support on a surface of which at least one of: a hydrophilizing treatment; and an undercoat layer has been provided and an image-recording layer, to cure an exposed area of the image-recording layer; and undergoing developing processing with an aqueous solution having pH of from 2 to 10, wherein the aqueous solution comprises an amphoteric surfactant and an anionic surfactant selected from an anionic surfactant having an aliphatic chain and a total number of carbon atoms included in the aliphatic chain of 6 or more and an anionic surfactant having an aromatic ring and a total number of carbon atoms of 12 or more, and a content of the anionic surfactant is from 0.1 to 3.3% by weight of the aqueous solution.
Abstract:
A lithographic printing plate precursor includes: an aluminum support; an intermediate layer; and an image-recording layer, in this order, wherein at least one of the intermediate layer and the image-recording layer contains a compound having an amino group and a functional group capable of interacting with the aluminum support in a molecule.