Abstract:
A device may comprise a substrate formed of a first semiconductor material and a trench formed in the substrate. A second semiconductor material may be formed in the trench. The second semiconductor material may have first and second portions that are isolated with respect to one another and that are isolated with respect to the first semiconductor material.
Abstract:
A device may comprise a substrate formed of a first semiconductor material and a trench formed in the substrate. A second semiconductor material may be formed in the trench. The second semiconductor material may have first and second portions that are isolated with respect to one another and that are isolated with respect to the first semiconductor material.
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
An improved MEMS thermal actuator has a cantilevered beam and a conductive circuit having two driving arms, an inner arm adjacent to the cantilevered beam, and an outer arm adjacent to the inner arm. Current flows through the inner and outer arms to heat the conductive circuit, causing it to expand relative to the cantilevered beam. A tether ties the conductive circuit to the cantilevered beam, so that upon expansion, the conductive circuit causes the cantilevered beam to deflect about its anchor point. However, only the inner arm of the driving beam is coupled to the cantilevered beam. Since the outer arm of the conductive circuit is not coupled to the cantilevered beam, the overall stiffness of the actuator may be decreased. In addition, serpentines may be placed in the outer arm of the conductive circuit, in order to further decrease the stiffness of this beam. The actuator may therefore be made more efficient, in that the deflection of the cantilevered beam may be increased for a given input current.
Abstract:
The invention relates to the preparation of multilayer microcomponents which comprise one or more films, each consisting of a material M selected from metals, metal alloys, glasses, ceramics and glass-ceramics.The method consists in depositing on a substrate one or more films of an ink P, and one or more films of an ink M, each film being deposited in a predefined pattern selected according to the structure of the microcomponent, each film of ink P and each film of ink M being at least partially consolidated before deposition of the next film; effecting a total consolidation of the films of ink M partially consolidated after their deposition, to convert them to films of material M; totally or partially removing the material of each of the films of ink P. An ink P consists of a thermoset resin containing a mineral filler or a mixture comprising a mineral filler and an organic binder. An ink M consists of a mineral material precursor of the material M and an organic binder. The inks are deposited by pouring or by extrusion.
Abstract:
A representative embodiment of the invention provides a thermal actuator for a MEMS-based relay switch. The thermal actuator has an “active” arm that is movably mounted on a substrate. The “active” arm has (i) a thermal expansion layer and (ii) a resistive heater that is electrically isolated from the thermal expansion layer. The thermal expansion layer is adapted to expand in response to a temperature change induced by a control current flowing through the resistive heater, thereby bending the “active” arm and moving that arm with respect to the substrate. Due to the fact that mechanical and electrical characteristics of the “active” arm are primarily controlled by the thermal expansion layer and the resistive heater, respectively, those characteristics can be optimized independently to obtain better operating characteristics for MEMS-based relay switches of the invention compared to those attained in the prior art.
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
An improved MEMS thermal actuator has a cantilevered beam and a conductive circuit having two driving arms, an inner arm adjacent to the cantilevered beam, and an outer arm adjacent to the inner arm. Current flows through the inner and outer arms to heat the conductive circuit, causing it to expand relative to the cantilevered beam. A tether ties the conductive circuit to the cantilevered beam, so that upon expansion, the conductive circuit causes the cantilevered beam to deflect about its anchor point. However, only the inner arm of the driving beam is coupled to the cantilevered beam. Since the outer arm of the conductive circuit is not coupled to the cantilevered beam, the overall stiffness of the actuator may be decreased. In addition, serpentines may be placed in the outer arm of the conductive circuit, in order to further decrease the stiffness of this beam. The actuator may therefore be made more efficient, in that the deflection of the cantilevered beam may be increased for a given input current.
Abstract:
The nano-gripper of the present invention comprises (i) a pair of arms 71 and 71 disposed side by side, each arm 71 having a face at its front end, the front-end faces of the arms 71 and 71 facing each other, (ii) and a protrusion 72 with a tip formed on the front-end face of each arm, the tips of the protrusions 72 and 72 facing each other, the radius of curvature of each tip being 50 nanometers or less. Each protrusion 72 is a triangular-pyramidal silicon crystal with (001), (100), and (111) side faces.
Abstract:
The nano-gripper of the present invention comprises (i) a pair of arms 71 and 71 disposed side by side, each arm 71 having a face at its front end, the front-end faces of the arms 71 and 71 facing each other, (ii) and a protrusion 72 with a tip formed on the front-end face of each arm, the tips of the protrusions 72 and 72 facing each other, the radius of curvature of each tip being 50 nanometers or less. Each protrusion 72 is a triangular-pyramidal silicon crystal with (001), (100), and (111) side faces.