摘要:
The present invention relates to a process for producing glass strands coated with a hot-melt size, whereby molten glass streams, flowing out of orifices located in the base of one or more bushings, are drawn in the form of one or more sheets of continuous filaments, the filaments are then assembled into one or more strands that are collected on one or more moving supports, this process consisting in depositing a first composition containing a coupling agent on the glass filaments and then in depositing a second composition comprising a hot-melt polymer in the melt state, at the latest during assembly of the filaments into one or more strands. It also relates to the glass strands obtained according to this process and to the composites containing said strands.
摘要:
Embodiments of the invention include a system and method for color-coating an optical fiber. The system includes a flow controller that controllably delivers and mixes color concentrate from one or more color concentrate reservoirs with a coating material, which colored coating material is fed to a coating die through which optical fiber passes. The color concentrate reservoirs are more compact and can be made portable along with the flow controller. Thus, the entire color coating system can travel to any appropriate location in the fiber manufacturing facility, e.g., at any one of a number of draw towers. Such portability allows many different colors to be used at the same draw tower much more easily than conventional arrangements, which typically only have one color line per draw tower. The method includes providing an optical fiber, controllably delivering color concentrate with a coating material to a coating die, coating the optical fiber with the coating die, and curing the coated fiber.
摘要:
A method and an arrangement in processing a fibre-like product. When the first product (3a) ends a new product (3b) is guided to a process unit and further through it. The new product (3b) is guided to be ready in the vicinity of the unit. The invention comprises a gripping unit (14) having a backing surface (15) with a curved portion. The new product (3b) is arranged to be pressed against the surface (15). When the first product (3a) ends the locking between the new product (3b) and the curved portion of the surface (15) and the portion in front thereof is released first, whereby the new product (3b) straightens out and the first end of the product (3b) moves on. Only thereafter the locking is released for other portions of the surface, whereby the tail end of the first product (3a) draws along a new product (3b) at a speed equal to that of the line.
摘要:
A new system and method for making agglomerates of chopped glass fiber strand segments is disclosed as are the agglomerates produced. The agglomerates, made by feeding wet chopped fiber strand segments into a wave chamber having a vibrating curved surface that produces a wave-like flow pattern in the segments and agglomerates, have a substantially higher bulk density and greatly improved flow characteristics than conventional chopped strand reinforcements. The wet agglomerates are usually dried in any conventional dryer.
摘要:
A new system and method for making agglomerates of chopped glass fiber strand segments is disclosed as are the agglomerates produced. The agglomerates, made by feeding wet chopped fiber strand segments into a wave chamber having a vibrating curved surface that produces a wave-like flow pattern in the segments and agglomerates, have a substantially higher bulk density and greatly improved flow characteristics than conventional chopped strand reinforcements. The wet agglomerates are usually dried in any conventional dryer.
摘要:
A method for drawing an optical fiber is provided in which a plurality of coating layers having a different viscosity is formed on the outer peripheral surface of a first optical fiber drawn from an optical fiber perform, then a second optical fiber with the coating layers formed thereon is drawn in a slanted direction relative to the drawing axis of the first optical fiber to form a third optical fiber incorporating a twist.
摘要:
The present invention provides materials suitable for use as secondary coatings of optical fibers or the re-coating of spliced optical fiber junctions. With regard to the latter use, the coating materials a preferably characterized by a Young's modulus that is at least about 1200 MPa, and an interfacial strength as measured by the rod and tube method of greater than 25 MPa.
摘要:
An optical fiber is prepared by applying a liquid electron beam-curable resin composition to a bare optical fiber or a coated optical fiber having a primary or secondary coating on a bare optical fiber, irradiating electron beams to the resin composition on the optical fiber for curing while the optical fiber passes a zone under substantially atmospheric pressure, and providing a magnetic field and optionally an electric field in the zone for thereby improving the efficiency of electron irradiation. The method can comply with the increased drawing speed of the bare optical fiber and does not detract from the transmission properties of the optical fiber.
摘要:
A method of coating an optical fiber includes a step of coating the fiber with a curable coating composition and a step of curing the composition, which contains an unsaturated compound having a double bond and an oxidation catalyst. The curing step includes an in-line first phase consisting in exposing the coated fiber to UV radiation for a time shorter than the time needed for complete curing followed by an off-line second phase consisting in placing the coated fiber in an oxidizing medium in order to complete curing.
摘要:
The present invention relates to an optical fiber recoating device, and to an improvement in the molds employed in this device. The optical fiber recoating device is provided for filling a recoating resin into molds, wherein semicircular mold grooves in molds into which the recoating resin is filled are longer than a bare fiber portion of an optical fiber, and an outer diameter of mold groove is larger than the outer diameter of semicircular sheath engaging grooves that engage a sheath of the optical fiber. As a result, a cylindrically shaped extending portion which extends to the sheath is formed to each end of the recoated sheath, so that joining strength of the recoated sheath is improved.