Abstract:
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Abstract:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of 9 to 15 molar sulfuric acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, and woven carbon fibers.
Abstract:
A system and methods are provided for electrochemical grinding a workpiece. In one embodiment, a method includes controlling potentials to grinding tool and the workpiece, controlling applying electrolyte, and controlling grinding of the workpiece by the grinding tool. The method may also include determining screen replacement when there is sufficient metal plated.
Abstract:
The invention relates to a process that allows electrolytic copper cathodes to be produced, using the pregnant leach solution (PLS) directly in the electrowinning, avoiding the step of mineral concentration by solvent extraction. Furthermore, this process has a modular structure and the full process can be mobilised depending on the requirements of the process itself. The invention also relates to the system that operates with the previously described process.
Abstract:
An anode assembly is provided having a pair of channels; anodes in slidable communication with the channels; conduit to direct carrier gas to the anode; and conduit to remove reaction gas from the anode. Also provided is a method for continuously feeding anodes into a electrolytic bath, the method having the steps of stacking the anodes such that all of the anodes reside in the same plane and wherein the stack includes a bottom anode; contacting the bottom anode with the electrolytic bath for a time and at a current sufficient to cause the bottom anode to be consumed during an electrolytic process; using gravity to replace the bottom anode with other anodes defining the stack.
Abstract:
A hanging bar for supporting an anode (10) without lugs which is formed by a first lower portion of the body (11) and a second upper hanging portion (12) which comprises: two elongated splints (15) having a width similar to said second upper hanging portion (12); two plastic spacer pieces (33) connecting the ends of said two splints (15) being each one of said two plastic spacer pieces (33) formed by a base (28) from which two pillars (20) emerge, leaving between both pillars (20) a central housing zone (34), wherein on said base (28) and between said pillars (20) there is a planar surface (31) and on the inner portion of said base (28) there is an inclined surface (30), two pivoting supports (17), being each one of them housed in the central housing (34) of said two plastic spacer pieces (33), wherein said pivoting supports (17) are formed by a straight piece (43) which finishes in one of its ends in a bushing (27) in the center of which has a first hole (39) which matches second holes (38) of said pillars (20) and third holes (40) of said elongated splints (15) in such a way that within the holes (38, 39, 40) a short axis (21) is housed wherein said pivoting supports (17) pivot; and a pair of pivoting lugs (16) which are supported by said pivoting supports (17) being each pivoting lug (16) formed by a first elongated portion (36) and a second short portion (37) integrally connected to each other at 90° providing an L shape wherein said first portion (36) has first toothed notches (26) and wherein said second short portion (37) has second toothed notches (25).
Abstract:
A method for recovering heavy metals and rare earth elements from fly ash, coal ash, and unrefined mineral ores containing rare earth metals using an ionic liquid and an organic acid to solubilize the metals. The solubilized components are removed from the ionic liquid by electrochemical deposition. The heavy metals and rare earth elements are deposited onto an electrode, and then purified via electrochemical processing.
Abstract:
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Abstract:
The invention relates to a cell for metal electrowinning equipped with a device useful for preventing the adverse effects of dendrite growth on the cathodic deposit. The cell comprises a porous conductive screen, positioned between the anode and the cathode, capable of stopping the growth of dendrites and preventing them from reaching the anode surface.
Abstract:
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.