Abstract:
A cable-stranding apparatus for performing SZ-stranding of strand elements about at least one core member is disclosed. A first stationary guide member individually guides the strand elements in a spaced apart configuration and centrally passes the at least one core member. At least one hollow-shaft motor is arranged downstream of the stationary guide member. A rotating guide member is disposed in the hollow shaft and rotates with the hollow shaft according to a rotation relationship. The rotation relationship controls the rotational speed and direction of the rotating guide member to SZ-strand the strand elements about the at least one core member to form an SZ-stranded assembly. Embodiments of cable-stranding apparatus having multiple hollow-shaft motors and respective multiple rotating guide members are also disclosed.
Abstract:
Cable-stranding methods for performing SZ-stranding of strand elements about at least one core member are disclosed. One method includes passing initially spaced apart strand elements through peripheral guide holes and passing at least one core member through a generally central location of at least one guide member. The method also includes actuating a controller that controls the rotation of the at least one guide member and rotating the at least one guide member to form the SZ-stranded assembly.
Abstract:
A cable-stranding apparatus for performing SZ-stranding of strand elements about at least one core member is disclosed. A first stationary guide member individually guides the strand elements in a spaced apart configuration and centrally passes the at least one core member. At least one hollow-shaft motor is arranged downstream of the stationary guide member. A rotating guide member is disposed in the hollow shaft and rotates with the hollow shaft according to a rotation relationship. The rotation relationship controls the rotational speed and direction of the rotating guide member to SZ-strand the strand elements about the at least one core member to form an SZ-stranded assembly. Embodiments of cable-stranding apparatus having multiple hollow-shaft motors and respective multiple rotating guide members are also disclosed.
Abstract:
Process for producing a steel cord for pneumatic tires comprising a bunch of wires, the core of which consists of wire filaments 10 arranged bunched juxtaposed in parallel. Preferably at least three wire filaments 10, 20 are provided, at least two wire filaments located juxtaposed in parallel being spirally shaped as core filaments 10 forming a core 60 and at least one wire filament spirally surrounding the two core filaments 10 as a sheathing wire 20. Spirally shaping the wire filaments 10 is achieved in accordance with the invention by false twisters 40. Due to this spiral shaping of the wire filaments 10 migration of the filaments from the core composite is avoided more particularly. The residual torsional stresses of the core filaments among each other and in conjunction with the restoring forces of the sheathing wire are advantageously cancelled. In addition, the steel cord features to advantage a flattened, more particularly, oval shape.
Abstract:
A reinforcing cord for use in radial tires, conveyor belts, hoses or driving belts, includes at least one strand of metal wires twisted along the longitudinal axis of the strand. Each metal wire has a substantially rectangular cross-section defining two opposite broad sides. The wires in the strand engage one another along their broad sides and preferably are wrapped around by a wrapping wire.
Abstract:
For the layer-wise SZ-stranding of elements to be stranded about a core strand, the elements to be stranded are first temporarily cabled onto the core strand with a long lay and alternating direction of lay, subsequently roped down from the core strand by means of a first cabling disc and fed, parallel to the core strand, to a second, oscillating cabling disc by means of which the final stranding is accomplished. The two cabling discs advantageously form the end faces of a twisting cage which revolves with alternating direction of rotation, with the distance of a first twisting closer, into which the core strand and the elements to be cabled enter, from the first cabling disc and the distance of the first cabling disc from the second cabling disc larger than the distance of the twist reversal points in the finished stranded material.