Abstract:
A rotary multi-port valve having a valve body defining a valve chamber and having a plurality of inlet flow ports each having a stationary seat member therein and having a discharge port. A flow diverter member is supported by a valve stem and a tubular trunnion for rotation within the valve chamber and has a diverter chamber. A piston is hydraulically moveable within the diverter chamber and has driving connection with a diverter valve member is linearly moveable for sealing engagement with a selected stationary seat member. The diverter valve member is selectively retracted to a position completely within the valve chamber to permit selective rotation of the flow diverter member within the valve body to an aligned position with any of the inlet ports of the valve body.
Abstract:
There is provided a control valve including a cylindrical casing having an inlet port and a first outlet port for a fluid, and a valve accommodated in the casing to be rotatable around an axis extending in an axial direction of the casing and having a flow path communicating with the inlet port to allow the fluid to flow therethrough, wherein a first communication port communicating with the flow path and the first outlet port according to a rotational position of the valve is formed in the valve, and a fail opening configured to be opened and closed by a thermostat is formed in a portion of the casing facing the inlet port in an opening direction of the inlet port.
Abstract:
A control valve having first, second, and third outlet ports, which pass through a casing in a radial direction and formed axially at intervals in the casing, first, second and third communication ports, which respectively communicate between the flow path and the first outlet port, between the flow path and the second outlet port and between the flow path and the third outlet port according to a rotational position of the valve, are formed at intervals in the axial direction in the valve. The second outlet port is located between the first and third outlet ports in the axial direction and also located at a different position from the first and third outlet ports in a circumferential direction. An opening width of the second communication port in the axial direction is narrower than an axial interval between the first and third outlet ports.
Abstract:
A rotary valve and a quick exhaust valve for a railway vehicle in which high sealability and operability at the time of valve opening and closing are ensured. Outflow/inflow ports (10, 11) and a discharge port (12) are formed in a valve body accommodating part having a spherical surface part or a tapered surface part formed on part of an inner periphery in a body (2), and a valve body (3) is rotatably inserted from an opening which is open from the valve body accommodating part. A spherically-shaped surface part or a tapered-shaped surface part is formed at a position opposing the spherical surface part or the tapered surface part, a plurality of through ports communicating the outflow/inflow ports or the discharge port and an attachment groove opposing the outflow/inflow ports in a direction crossing the through ports are formed, and a seal member is attached to the attachment groove.
Abstract:
In accordance with the present inventive concept, there is provided a valve for administration of a plurality of drug fluids, such as cytostatics. The valve comprises: a housing having a plurality of circumferentially distributed primary inlets for receiving a respective one of the drug fluids and a secondary inlet for receiving a secondary fluid, such as a neutral fluid, an outlet, and a valve member arranged in the housing. The housing has a plurality of primary valve positions in each of which an associated one of the primary inlets is connected to the outlet, and a plurality of intermediary valve positions in each of which the secondary inlet is connected to the outlet. Moreover, the valve member has a outer surface sealingly engaging an inner surface of the housing, such that the primary and secondary inlets are sealingly connected to openings arranged in the outer surface of the valve member in each of the primary and intermediary valve positions, respectively. Figure for publication.
Abstract:
An exemplary pharmaceutical compounding system and device for mixing materials from at least two distinct material sources can include a valve including a valve housing and a valve structure located within the valve housing. The valve structure can be configured to permit fluid to flow through the valve when in an open position, and can include a gravity wall wherein, when the valve structure is in the open position, fluid moving through the valve structure moves upward against a force of gravity when travelling through the valve and traversing the gravity wall.
Abstract:
In a cooling control device CM that controls the cooling state of an external device by controlling the flow rate of cooling water that flows in from an introduction port 10 and causing the cooling water to flow out from a first to a third discharge ports E1 to E3, the cooling control device CM is configured that, for example, the flow rate of the cooling water to be supplied to a radiator side from the cooling control device CM is controlled by the cooperation of a flow rate control valve CV that controls the flow rate of the water supply according to a preset rule, and a switching control valve SV that controls the flow rate of the water supply independently from the flow rate control valve CV through a route different from that of the flow rate control valve CV.
Abstract:
An exemplary pharmaceutical compounding system and device for mixing materials from at least two distinct material sources can include a valve including a valve housing and a valve structure located within the valve housing. The valve structure can be configured to permit fluid to flow through the valve when in an open position, and can include a gravity wall wherein, when the valve structure is in the open position, fluid moving through the valve structure moves upward against a force of gravity when travelling through the valve and traversing the gravity wall.
Abstract:
An electrically actuated valve may include a housing and a cylindrical valve body mounted rotatably therein. The housing may have at least one casing-side inlet and at least one casing-side outlet. The valve body may have at least one casing-side opening, via which the inlet may be at least one of connectable to the outlet and able to be shut off from the outlet dependent on a rotary angle. A recess extending at least partially around at least one of the inlet and the outlet may be provided on an inner casing face of the housing. At least one sealing element may be provided with a base made from a first material, and a saddle-shaped sealing sliding body made from a second material joined to the first. The sealing element may engage with the base into the recess, and may slide with the sealing sliding body on the valve body.
Abstract:
The invention relates to a fluid circulation valve, notably for a motor vehicle, comprising a body (2) and a shutoff element (3) able, by rotation of said element (3) with respect to said body (2), to occupy various angular positions, said body (2) having a first (6), a second (7), a third (21) and a fourth (22) inlet/outlet. Said valve is configured so that it: —in a first of said angular positions allows fluid to circulate from the first (6) to the second (7) inlet/outlet, —in a second of said angular positions allows fluid to circulate from the first (6) to the third (21) inlet/outlet, and from the fourth (22) to the second inlet/outlet (7), —in a third of said angular positions allows fluid to circulate from the first (6) to the fourth inlet/outlet (22) and from the third (21) to the second (7) inlet/outlet.