Abstract:
The embodiments disclosed generally relate to a read head in a magnetic recording head. The read head utilizes a spin Hall effect layer disposed on the free magnetic layer. Electrical bias is applied to the top shield, or lead layer, longitudinally so that the current is longitudinally driven through the spin Hall effect layer. The spin Hall effect layer may comprise Pt, Ta, W, copper doped with either bismuth or iridium, a noble metal having group 5d non-magnetic impurities, or combinations thereof. The spin Hall effect layer, together with the longitudinally applied bias, reduces the damping in the free magnetic layer and hence, reduces the thermal magnetic noise of the read head.
Abstract:
A data reader may be configured at least with detector and injector stacks that each has a common spin accumulation layer. The detector stack may positioned on an air bearing surface (ABS) while the injector stack is positioned distal the ABS. The injector stack can have a diffusive layer with a larger spin diffusion length than mean free path.
Abstract:
In one embodiment a magnetic head includes a sensor thin film adapted for producing a planar Hall voltage, the sensor thin film having a thickness along a down-track direction that is greater than a thickness along a cross-track direction. The down-track direction is in a direction of travel of a magnetic medium relative to the sensor thin film, and the cross-track direction is perpendicular to the down-track direction. In another embodiment, at least one magnetic head as described above is included in a magnetic data storage system, which includes a magnetic medium, a drive mechanism for passing the magnetic medium over the at least one magnetic head, and a controller electrically coupled to the at least one magnetic head for controlling operation of the at least one magnetic head. Other heads and systems are described according to various other embodiments.
Abstract:
A Lorentz Magnetoresistive sensor having an ultrathin trapping layer disposed between a quantum well structure and a surface of the sensor. The trapping layer prevents charge carriers from the surface of the sensor from affecting the quantum well structure. This allows the quantum well structure to be formed much closer to the surface of the sensor, and therefore, much closer to the magnetic field source, greatly improving sensor performance. A Lorentz Magnetoresistive sensor having a top gate electrode to hinder surface charge carriers diffusing into the quantum well, said top gate electrode being either a highly conductive ultrathin patterned metal layer or a patterned monoatomic layer of graphene.
Abstract:
Embodiments of the present invention relate to a galvanomagnetic device for use as a magnetic sensor or magnetic memory device. In a particular embodiment, the galvanomagnetic device comprises a non-conductive substrate, a first magnetic layer having a magnetic anisotropy perpendicular to the surface thereof, and a ferromagnetic second magnetic layer formed on the first magnetic layer. On the second magnetic layer, current electrodes are disposed to pass a current between two points, and voltage electrodes are disposed to detect a Hall voltage between two points perpendicularly to the current flow direction.
Abstract:
Disclosed is a magnetic head comprising a support member having a plane faced by a magnetic recording medium; an electromagnetic converter mounted on the support member, and provided with an amorphous magnetic film which is possessed of an axis of easy magnetization extending in a prescribed direction along the plane of the film.The amorphous magnetic film occupies such a position on the support member that a magnetic flux sent forth from the recording medium passes through the amorphous magnetic film in the prescribed direction.
Abstract:
According to one embodiment, a magnetic sensor includes first to sixth shields, first and second magnetic layers, a first member, and first to fourth terminals. The first magnetic layer is provided between the first shield and the second shield. The first magnetic layer is between the third shield and the fourth shield in the second direction. The second magnetic layer is provided between the first magnetic layer and the second shield. The second magnetic layer is between the fifth shield and the sixth shield in the second direction. The second magnetic layer is electrically connected to the fifth shield and the sixth shield. The first member includes a first region and a second region. The first region is provided between the third shield and the first magnetic layer. The second region is provided between the first magnetic layer and the fourth shield.
Abstract:
A magnetic sensor utilizing the spin Hall effect to polarize electrons for use in measuring a magnetic field. The sensor eliminates the need for a pinned layer structure or antiferromagnetic layer (AFM layer), thereby reducing gap thickness for increased data density. The sensor includes a non-magnetic, electrically conductive layer that is configured to accumulate electrons predominantly of one spin at a side thereof when a current flows there-through. A magnetic free layer is located adjacent to the side of the non-magnetic, electrically conductive layer. A change in the direction of magnetization in the free layer relative to the orientation of the spin polarized electrons causes a change in voltage output of the sensor.
Abstract:
A magnetic sensor utilizing the spin Hall effect to polarize electrons for use in measuring a magnetic field. The sensor eliminates the need for a pinned layer structure or antiferromagnetic layer (AFM layer), thereby reducing gap thickness for increased data density. The sensor includes a non-magnetic, electrically conductive layer that is configured to accumulate electrons predominantly of one spin at a side thereof when a current flows there-through. A magnetic free layer is located adjacent to the side of the non-magnetic, electrically conductive layer. A change in the direction of magnetization in the free layer relative to the orientation of the spin polarized electrons causes a change in voltage output of the sensor.
Abstract:
According to one embodiment, magnetic reproducing element for detecting a magnetic field from a magnetic recording medium comprises a sensor film including a perpendicular magnetization film having a magnetization easy axis in a direction perpendicular to a film plane, wherein magnetization in the sensor film tilts upward or downward in an element height direction from the magnetization easy axis while no magnetic field is applied from the magnetic recording medium, and change in anomalous Hall voltage generated in the sensor film is detected, thereby allowing the magnetic field applied from the magnetic recording medium to be detected. Other magnetic reproducing elements and magnetic heads employing magnetic reproducing elements are described as well.