Abstract:
The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.
Abstract:
A thermionic emission device includes an insulating substrate, and one or more grids located thereon. Each grid includes a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. The insulating substrate comprises one or more recesses that further insulate the thermionic electron emitters from the substrate.
Abstract:
To obtain a brazing material where the major components thereof is Mo and Ru of the rare metal is not used.The brazing material comprised of (1 to 3.5) wt % of C—(1 to 3.5) wt % of B—remainder of Mo.
Abstract:
A solid-state vacuum device (SSVD) and method for making the same. In one embodiment, the SSVD forms a triode device comprising a substrate having a cavity formed therein. The SSVD further comprises cathode positioned near the opening of the cavity, wherein the cathode spans over the cavity in the form of a bridge that creates an air gap between the cathode and substrate. In addition, the SSVD further comprises an anode and a grid that is positioned between the anode and cathode. Upon applying heat to the cathode, electrons are released from the cathode, passed through the grid, and received by the anode. In response to receiving the electrons, the anode produces a current. The current received by the anode is controlled by a voltage applied to the grid. Other embodiments of the present invention provide diode, tetrode, pentode, and other higher order device configurations.
Abstract:
An electron-emitting surface is provided with a material reducing the electron work function, which is obtained from a suitable reaction. The reaction mixture or the product to be decomposed, for example CsN.sub.3, is present in a surface depression of a semiconductor body, while one or more pn junctions act as a heating diode. Upon heating, cesium is released and deposited on the electron-emitting surface.
Abstract:
A method for manufacturing a thermionic cathode is provided which comprises cutting a bar from a multi-layer structure having a first layer of thermoelectron emissive compound and a third layer of metal of high melting point, a second layer of reaction barrier being interposed between said first and third layers, the bar being cut in a direction substantially perpendicular to that of the layers, sharpening the end of the first layer of the bar and then providing current terminals with the third layer of the bar. According to the method of the invention, a thermionic cathode capable of emitting stable electron beams of high intensity for a long period of time can be manufactured.
Abstract:
An insulative electrode spacer member is provided for an electron discharge device, which spacer comprises a disc of natural mica provided with a cathode dampening arm as an integral part of the spacer. A hole is formed in the mica spacer adjacent the dampening arm for the insertion of a cathode which is properly engaged by a free end of the dampening arm which is positioned on the top of the cathode. The cathode may be notched at the top and the arm so positioned with respect thereto that the arm only engages the bottom of the notch when the cathode expands due to normal operational heating.