Abstract:
A plasma display apparatus is provided having an improved glass filter. The plasma display includes a panel assembly, and a glass filter provided in front of the panel assembly. The glass filter includes a plurality of a dot parts disposed in front of a glass plate to adjust light transmissivity from the panel assembly and external light reflxibility. Thus, the glass filter may be produced simply, thereby lowering the production cost of the glass filter.
Abstract:
The production process of an electromagnetic wave shielding material of the present invention comprises screen printing a conductive paste containing conductive particles, binder and solvent in a geometrical pattern on the surface of a transparent porous layer of a transparent resin substrate provided with the transparent porous layer, the porous layer containing as a main component thereof at least one type selected from the group consisting of an oxide ceramic, a non-oxide ceramic and a metal, followed by forming a conductive portion in a geometrical pattern on the surface of the transparent porous layer by heat treatment. An electromagnetic wave shielding material produced according to this production process has high electromagnetic wave shielding effects and superior transparency and visibility.
Abstract:
Disclosed herein is a PDP filter having a laminated structure of a transparent conductive film type electromagnetic wave-shielding layer and one or more other functional layers, in which at least two edge portions of the surface of the transparent conductive film type electromagnetic wave-shielding layer, which is in contact with the functional layer, are not exposed outside the laminated structure of the PDP filter.
Abstract:
Provided is a configuration for conveniently performing an ground with respect to a film-typed front filter, comprising: a panel; a film-typed front filter attached to a front surface of the panel; a back cover installed at the rear of the panel; a front cabinet equipped at the front of the panel; a frame electrically connected with the back cover; and a grounding member providing with the first point connected with the frame and the second point grounding the film-typed front filter upwardly as a different goods from the frame.
Abstract:
An optical filter includes a support layer, absorption patterns on a first surface of the support layer, the absorption patterns having a predetermined interval therebetween, and adhesion members on the first surface of the support layer, the adhesion members being buried in the predetermined interval between the absorption patterns.
Abstract:
The present invention sufficiently reduces unwanted radiation in a plasma display panel (PDP) display device. The display device includes a PDP having a pair of electrodes, a first, a second, and a third conductive member, and a pair of driving circuits used to apply a voltage to their respective electrodes. Each conductive member has substantially the same width and height as the PDP, and the first, second, third conductive members are disposed on the rear surface of the PDP, in this order on the rear side of the PDP. The PDP and the conductive members are connected electrically to one another in the end portions of these elements, either directly or via the driving circuits, so that the direction of the current flowing in the PDP during driving and discharge coincides with the direction of the current flowing in the third conductive member, and is opposite from the direction of the current flowing in the first conductive member and the second conductive member.
Abstract:
Disclosed is a plasma display panel capable of reducing light reflection on screen. The present embodiments provide a plasma display panel provided with discharge spaces between a front panel, a rear panel and barrier ribs and including a phosphor layer formed in the discharge space, wherein the front panel includes a front substrate; a plurality of striped pattern regions provided in a first surface of the front substrate that faces the rear panel, and extended toward a first direction; a plurality of first pattern regions provided in a second surface of the front substrate and formed with a pattern in which the striped pattern regions are orthogonally projected to the second surface of the front substrate, and with the same pattern in a position that is overlapped with the pattern region; and a plurality of second pattern regions provided in the second surface of the front substrate and crossed with the first pattern regions.
Abstract:
A combination of filters for filtering selected wavelengths of electromagnetic radiation is provided on a transparent substrate such as a plastic film or glazing of a window. The combination of filters prevents or attenuates the passage of wavelengths through the substrate into a building, where the passage of the wavelengths into the building could adversely affect people or machinery within the building. The combination of filters is useful improve wireless networks performance by blocking or attenuating undesired electromagnetic interference, and radio frequency interference.
Abstract:
A silver salt-containing layer containing a silver salt and provided on a support is exposed and developed to form a metal silver portion and a light-transmitting portion, and then the metal silver portion is further subjected to physical development and/or plating to form a conductive metal portion consisting of the metal silver portion carrying conductive metal particles. A method for producing a light-transmitting electromagnetic wave-shielding film which enables production of an electromagnetic wave-shielding material simultaneously having high EMI-shielding property and high transparency in a fine line pattern and also enables mass production of such films at a low cost, and a light-transmitting electromagnetic wave-shielding film obtained by the production method and free from the problem of moire are provided.
Abstract:
An electromagnetic wave shielding sheet 1 comprises a transparent substrate 11, and line parts 107 that define openings 105, provided on the transparent substrate 11. The line parts 107 have a metal mesh layer 21, and a blackening layer 25A formed on the surface of the metal layer 21, on the side of the transparent substrate 11. Matted layers 31 are formed on the side faces of the line parts 107, and an anticorrosive layer 23A is provided between the blackening layer 25A and the transparent substrate 11.