Abstract:
A method and system for the transmission of digital data (210) over existing analog radio frequencies (230) is presented, wherein the digital data may include audio data, visual data or audio-visual data for presentation either with analog broadcast data or at a selectable time. The digital data may be transmitted over a plurality of sub-channels that have varying degrees or reliability (250). A “quality-of-service” process manages the transmission of digital data over various sub-channels based on the reliability of the sub-channel, the amount of digital data and the type of digital data to be transmitted. The digital data may further be encrypted and authenticated.
Abstract:
A method and system for the transmission of digital data (210) over existing analog radio frequencies (230) is presented, wherein the digital data may include audio data, visual data or audio-visual data for presentation either with analog broadcast data or at a selectable time. The digital data may be transmitted over a plurality of sub-channels that have varying degrees or reliability (250). A “quality-of-service” process manages the transmission of digital data over various sub-channels based on the reliability of the sub-channel, the amount of digital data and the type of digital data to be transmitted. The digital data may further be encrypted and authenticated.
Abstract:
Methods and systems for preparing data for broadcast via digital radio broadcast transmission is disclosed comprising the steps of receiving a plurality of content files corresponding to programming information for program content to be broadcast; receiving an index file having a pointer for each of the plurality of content files, wherein the index file is associated with a first logical address; storing the index file and the plurality of content files; scheduling a broadcast rotation of the index file and the plurality of content files (wherein the index file is scheduled for repeated transmission intermittently relative to selected ones of the content files); and transmitting the index file and the plurality of content files to an importer in accordance with the broadcast rotation.
Abstract:
An broadcasting receiver suitable for receiving a broadcasting signal transmitted in an IBOC signal format, includes: a narrowband filtering means suitable for processing an analog broadcasting signal included in the broadcasting signal; a wideband filtering means suitable for processing a digital broadcasting signal included in the broadcasting signal; a demodulating means for demodulating the broadcasting signal; a signal level detecting means for detecting a level of the broadcasting signal; a digital determining means for determining whether the broadcasting signal includes digital broadcasting signal or not; and a filter switching means for switching filtering means for use in processing the broadcasting signal to be input to the demodulating means between the narrowband filtering means and the wideband filtering means, according to the level of the detected broadcasting signal, when the digital determining means determines that the broadcasting signal does not include the digital broadcasting signal.
Abstract:
This invention provides a method for interleaving bits of a digital signal representative of data and/or audio in a digital audio broadcasting system, the method comprising the step of: writing a plurality of bits of the digital signal to a matrix; and reading the bits from the matrix, wherein at least one of the writing and reading steps follows a non-sequential addressing scheme. Apparatus for transmitting the interleaved bits, and apparatus for receiving and deinterleaving the bits are also provided.
Abstract:
Audio or other information is delivered to a user via a multi-stream digital broadcasting system in a partially-encrypted form. The information is encoded and separated into multiple bitstreams, at least a subset of which are left unencrypted. Both the encrypted and unencrypted bitstreams are received and stored by the user. A user is able, for at least a limited period of time, to access the information at a first quality level, e.g., an FM-quality level for audio information, without having the corresponding decryption key, by utilizing only the unencrypted bitstreams. The user can then access an electronic-commerce web site to purchase the decryption key. The key may be downloaded from the site to an information processing device of the user, and may be utilized to decrypt the partially-encrypted format, such that the user is provided with access to the information at a second quality level higher than the first quality level, e.g., a CD-quality level for audio information. The multiple bitstreams may correspond, e.g., to subbands of at least first and second digital sidebands of a host carrier signal in an FM in-band on-channel (FM-IBOC) digital audio broadcasting system.
Abstract:
An FM broadcast transmitter transmits a broadcast signal having a carrier at a broadcast frequency and sidebands, able to be transmitted at full power, within a transmission band-width around the carrier. It includes a source of a modulated FM stereo signal having a carrier at the broadcast frequency and having sidebands with a bandwidth less than the transmission bandwidth representing a stereo signal. It also includes a source of a modulated IBOC signal, having carrier pulses spaced relative to each other to represent the IBOC digital data signal encoded as a variable pulse width encoded signal, and a bandwidth within the transmission bandwidth not overlapping the FM stereo signal sidebands. A signal combiner combines the modulated FM stereo signal and the modulated IBOC signal to form the broadcast signal. An FM broadcast receiver receives a broadcast signal including a first modulated signal representing an FM stereo signal, and a second modulated signal, having carrier pulses spaced relative to each other to represent an in-band-on-channel (IBOC) digital data signal encoded as a variable pulse width encoded signal. It includes a signal separator for generating a first separated signal representing the FM stereo signal and a second separated signal representing the IBOC digital data signal. An FM signal processor generates a stereo audio signal represented by the FM stereo signal. An IBOC signal processor generates a digital data signal represented by the IBOC digital data signal.
Abstract:
A method for digital audio broadcasting comprising the steps of receiving a plurality of data bits to be transmitted, formatting the plurality of data bits into a plurality of protocol data units, inserting header bits at spaced locations within the protocol data units, and using the protocol data units to modulate a plurality of carriers to produce an output signal. The individual header bits can be positioned at evenly spaced locations in the protocol data units. A first one of the header bits can be offset from an end of the protocol data unit. A method of receiving the digital audio broadcasting signal the transmitters and receivers that operate in accordance with the methods are also provided.
Abstract:
A method of receiving an FM digital audio broadcasting signal including a first plurality of subcarriers in an upper sideband of a radio channel and a second plurality of subcarriers in a lower sideband of the radio channel comprises the steps of mixing the digital audio broadcasting signal with a local oscillator signal to produce an intermediate frequency signal, passing the intermediate frequency signal through a bandpass filter to produce a filtered signal, determining if one of the upper and lower sidebands of the digital audio broadcasting signal is corrupted, and adjusting the local frequency oscillator signal to change the frequency of the intermediate frequency signal such that the bandpass filter removes the subcarriers in the upper or lower sideband that has been corrupted. A receiver that processes a digital audio broadcasting signal in accordance with the method is also provided.
Abstract:
A system and method for transmitting digital information through a medium such as atmospheric free-space includes a transmitter which generates a signal based on a basis set of mutually orthogonal, spectrally-shaped, sequences of substantially equal length and having predetermined autocorrelation values. The sequences may resemble noise in at least some of their characteristics. The orthogonality or cross-correlation characteristics, the autocorrelation characteristics and the resemblance to noise are due to features derived from sequences of pseudo-random numbers which themselves resemble noise in at least some of their characteristics. The waveform set based on the sequences is modulated digitally. The modulated set may be summed together along with a wideband reference signal of reduced amplitude and optionally an FM analog signal to form a composite signal which is broadcast typically through free space to at least one receiver. The receiver separates the analog FM signal from the digital signal and thereafter demodulates the digital data-carrying waveforms and outputs a stream of digital data. It has been determined to be resistant to multipath degradation.