摘要:
A receiver dryer includes a first body and a second body, one end of the second body away from the first body defining first and second connecting ports. The receiver dryer includes a filter cartridge including a first mating portion, a second mating portion, and a filter part at a middle portion; the first mating portion fits with an inner wall of the second body, one space allowing refrigerant to flow is formed between the filter part and the inner wall of the second body, the second mating portion is connected to the second connecting port, the space between the filter part and the inner wall of the second body communicates with the first connecting port, an inside of the filter part communicates with the second connecting port via the second mating portion, and refrigerant is filtered at least once when flowing between the first and second connecting ports.
摘要:
A method produces piston-type accumulators, including an accumulator housing (10) and a separating piston, which can be displaced in a longitudinal direction inside the accumulator housing (10) and separates two working spaces located in the housing. One end face of the accumulator housing is sealed by cover part (20). The cover part (20) is fixed on one side (40) via the free longitudinal edge (32) of the accumulator housing (10). The edge is displaced towards the cover part (20), such that a functionally and positionally secure connection of a cover part is ensured within the housing of a piston-type accumulator without using standard threaded connections.
摘要:
The improvement in the manufacturing of fluid ports commonly used hydraulic bladder type accumulators by the manufacturing of the fluid port body and the poppet valve guide as separate pieces in the manufacturing process.
摘要:
A pressure vessel for storage of a pressurized fluid is provided. The pressure vessel includes a composite layer having an outer surface and an inner surface. The inner surface defines an internal cavity. The pressure vessel further includes at least one pressure relief device in fluid communication with the internal cavity. At least one thermally conductive element is continuously wound on the outer surface of the composite layer and adapted to carry load and transport heat from a heat source adjacent the composite layer to the at least one pressure relief device. A method for producing the pressure vessel is also provided.
摘要:
A fuel injector and a method for manufacturing a fuel injector are described. The fuel injector includes a glass substrate and a nozzle enclosed within the glass substrate. The nozzle includes at least one injection hole. The method of manufacturing a fuel injector includes defining a shape of at least one injection hole in a glass substrate to obtain an at least one outlined injection hole and etching the at least one outlined injection hole to obtain the at least one injection hole.
摘要:
A cold and/or heat accumulator with a plurality of carrier elements (10) which are charged with a cold or heat storage medium, and with a heat exchanger (12) which is designed to have a heat transfer medium flow through it in order to cause heat exchange between the cold or heat storage medium and the heat transfer medium. The heat exchanger (12) has at least one serpentine hollow section (14), and at least at least one carrier element (10) is provided between the legs of at least some of the loops of the serpentine hollow section. In a process for producing the cold and/or heat accumulator, the height of the carrier elements is coordinated to a distance between the legs of the at least one loop such that, after a force-fit connection is formed between the serpentine hollow section and the carrier elements.
摘要:
A method of installing a piston position sensor proximate to a closed end of a hydraulic cylinder is provided. The sensor is attached to the face of a piston and that piston/sensor combination is inserted into the cylinder tube to position the sensor in the desired location. When properly located within the cylinder tube, the sensor is affixed to the cylinder tube by means of beveled holes in the sensor that receive bolts threadedly inserted through the cylinder tube to further properly align the sensor within the cylinder tube. When so affixed, the sensor is then detached from the piston so that the piston can thereafter move independently of the sensor. A fixture is also used that allows the assembler to accurately align the angular orientation of the sensor prior to being inserted into the cylinder tube.
摘要:
Systems and methods of applying an ozone-depleting catalytic coating to an air stream component for producing a durable surface with optimal ozone depletion characteristics are provided. An air stream component having a surface with favorable adhesive properties or coatings is exposed to a concentration of ozone-depleting catalytic particles, wherein the receptive surface of the coated substrate binds the ozone-depleting catalytic coating.
摘要:
A method of installing a piston position sensor proximate to a closed end of a hydraulic cylinder is provided. The sensor is attached to the face of a piston and that piston/sensor combination is inserted into the cylinder tube to position the sensor in the desired location. When properly located within the cylinder tube, the sensor is affixed to the cylinder tube by means of beveled holes in the sensor that receive bolts threadedly inserted through the cylinder tube to further properly align the sensor within the cylinder tube. When so affixed, the sensor is then detached from the piston so that the piston can thereafter move independently of the sensor. A fixture is also used that allows the assembler to accurately align the angular orientation of the sensor prior to being inserted into the cylinder tube.
摘要:
An accumulator acts as a buffer to prevent over-pressurization of the vapor compression system while inactive. By determining the maximum storage temperature and the maximum storage pressure a system will be subject to when inactive, a density of the refrigerant for the overall system can be calculated. Dividing the density by the mass of the refrigerant determines an optimal overall system volume. The volume of the components is subtracted from the overall system volume to calculate the optimal accumulator volume. The optimal accumulator volume is used to size the accumulator so that the accumulator has enough volume to prevent over-pressurization of the system when inactive.