Abstract:
A plasma display panel (PDP) that has a front substrate, a rear substrate arranged opposite to the front substrate, closed-type front barrier ribs arranged between the front substrate and the rear substrate and formed of a dielectric material, the front barrier ribs defining discharge cells together with the front and rear substrates, front and rear discharge electrodes arranged within the front barrier ribs and surrounding the discharge cells and spaced apart from each other, phosphor layers arranged within the discharge cells and a discharge gas injected into discharge cells.
Abstract:
A plasma display panel (PDP) which can reduce the cost and time of manufacturing a plasma display device, and which can improve heat transfer efficiency of a plasma display device, comprises: a transparent front substrate; a rear substrate disposed parallel to the front substrate; an electromagnetic wave shielding layer fixed on the front substrate; a plurality of discharge cells defined by barrier ribs disposed between the front substrate and the rear substrate; a plurality of address electrodes extending over the discharge cells and disposed in a given direction; a rear dielectric layer covering the address electrodes; a plurality of fluorescent layers disposed in the discharge cells; a plurality of sustaining electrode pairs extending in a direction which crosses the given direction of the address electrodes; a front dielectric layer covering the sustaining electrode pairs; and a discharge gas filling the discharge cells.
Abstract:
In a driving method for driving a plasma display panel, achieving improvements on luminous efficiency, brightness and contrast, as well as, low voltage and low power consumption, and also high-speed addressing and sustain therewith, wherein onto a second display electrode is applied pulse voltage in reverse polarity with sustain pulse voltage, nearly in synchronism with the sustain pulse voltage to be applied onto a first display electrode, thereby shifting initial discharge (or, pre-charge) caused between the first display electrode and a metal electrode of a partition portion after the generation thereof into display discharge, thereby forming wall charge and wall voltage on the second display electrode.
Abstract:
A plasma display panel includes a pair of substrates spaced apart from each other and facing each other, a visible light generator arranged between the pair of substrates, and an electrode layer adapted to apply the same potential to a plane arranged between the pair of substrates at a predetermined angle with respect to a direction perpendicular to the pair of substrates.
Abstract:
The invention provides plasma display panel technique that is operated with a low voltage and reduced power consumption, and exhibits high luminous efficiency and high luminance. A barrier plate comprises a metal electrode having a projection that projects partially toward the cell space side between display electrodes formed so that the display electrodes intersect with an address electrode in a plane approximately parallel to the panel plane.
Abstract:
A discharge display device wherein a gas-tight space defined by two plates and a sealing member is divided into a plurality of discharge chambers by partition walls formed on one of the two plates, and height adjusting layers are interposed between end faces of the respective partition walls and an inner surface of the other plate. Each height adjusting layer is formed from a material which has a softening point not lower than that of the sealing member and which is softened at a sealing temperature at which the two plates are bonded together by the sealing member. The height adjusting layers, which assure gas-tight separation of the discharge chambers, may replace upper end portions of the partition walls. Alternatively, the partition walls may be entirely formed from the above-indicated material. Also disclosed is a process of fabricating such a discharge display device, wherein height adjusting layers are softened at the sealing temperature when the two plates are bonded together with the melting of the sealing member.
Abstract:
Disclosed is a plasma display panel including a porous metal plate in which a plurality of holes for display cells are formed at positions corresponding to intersections at which a first linear electrode group and a second linear electrode group cross each other with a predetermined interval therebetween, and a front glass plate, wherein openings of the holes of the porous metal plate on the front surface side are larger than openings on the rear surface side, the openings on the rear surface are covered with a molten material of an inorganic dielectric containing glass and are thereby air-tightly sealed. This plasma display panel is light in weight and thin and can be easily assembled.