Abstract:
Wireless lighting control systems and methods for controlling the illumination of one or more light fixtures are disclosed. Embodiments include a server connected to a wide area network and having software for configuring, monitoring, and controlling lighting fixtures at a site. The control system also includes a wireless gateway at the site communicating with the server via cellular. Wireless devices communicate with the wireless gateway via a mesh network and each wireless device is wired to control at least one lighting fixture. A user interface can connect to the wide area network and enable a user to access server control software. Control instructions entered on the server by the user interface are communicated from the server to the wireless gateway and to the wireless devices. A user site device may be connected to the site mesh network enabling a user to configure, monitor, and control lighting fixtures at the site.
Abstract:
A network switch and luminaire provide environmental lighting via network infrastructure. The network switch operates in a communication mode that communicates, via a network interface, data with the luminaire over a network. Some portion of the data may be lighting control information for the luminaire that is produced by a control device. The network uses a network protocol that provides power to the luminaire using a network cable, where the luminaire uses the power to illuminate a lighting element. In response to a signal received by an emergency control input on the network switch, the emergency circuitry switches the network switch from the communication mode to an emergency lighting mode. The emergency lighting mode bypasses the processor used for communicating data via the network interface, and provides, via the network cable attached to the network interface, only power to the luminaire.
Abstract:
A method for facilitating space experiences for at least a first space user and for at least first and second different spaces, the method comprising the steps of storing first and second space experience specifications for the first and second different spaces, respectively, wherein the first and second space experience specifications indicate space affordance settings for the first and second spaces, respectively, sensing a trigger event associated with at least one of the first and second different spaces, where the sensed trigger event is associated with the first space, using the first space experience specification to control the first space affordances and where the sensed trigger event is associated with the second space, using the second space experience specification to control the second space affordances.
Abstract:
A network apparatus is provided. The network apparatus includes a communication unit configured to perform communication with at least one device. The apparatus also includes a storage unit configured to store information for an illumination device located within a preset distance range from the at least one device. The apparatus further includes a controller configured to control a light-emitting state of the illumination device located within the preset distance range from the at least one device based on the information stored in the storage unit when a preset event occurs in the at least one device.
Abstract:
One or more example diagnostics may be performed by a network server for a network of intelligent luminaire managers or other radio frequency (RF) devices. The network server may receive messages or information from one or more of the plurality of networked intelligent luminaire managers or RF devices. The network server may perform diagnostics based upon the received messages or information from one or more of the plurality of networked intelligent luminaire managers or RF devices. The network server may also leverage knowledge of respective statuses of at least a portion of the plurality of the networked intelligent luminaire managers or RF devices to determine a system-level status.
Abstract:
A hollow cathode lamp is described with an end cap, an anode, and a cathode. A data storage device is part of the end cap and communicates data to and from a computing device. The data communicated with the computing device may include identification information and usage information corresponding to the hollow cathode lamp. Additionally, a method is described that includes activating a power supply to a hollow cathode lamp and communicating data with a memory device located in the hollow cathode lamp. The data communicated with the memory device includes usage information about an amount of time the hollow cathode lamp has been in use.
Abstract:
A circuit for monitoring the functionality of an electrical element. A primary power supply provides direct current to the electrical element at a current sufficient for the electrical element to operate. A Schottky diode is disposed between the primary power supply and the electrical element, wherein the electrical element draws its operational current through the Schottky diode when in operation. A reverse bias power supply is provided. An opto-isolator is disposed between the reverse bias power supply and the electrical element. The electrical element draws a secondary current from the reverse bias power supply through the opto-isolator. The opto-isolator creates an output signal that is indicative of the secondary current. The output signal is used to control a remote failure indicator. When the electrical element fails, the current flowing through the opto-isolator stops. This triggers the failure indicator and informs a user as to the failed status.
Abstract:
An illumination load determination device includes an illumination load; a voltage applying unit for applying a voltage to the illumination load; a connection unit for connecting the illumination load and the voltage applying unit; a detection unit for detecting at least one of a current flowing through the illumination load and a voltage across the illumination load when the voltage is applied to the illumination load from the voltage applying unit via the connection unit; and a determination unit for determining a type of the illumination load based on an output from the detection unit. The determination unit has a comparator for comparing a detection value detected by the detection unit to a predetermined threshold, and determines that the illumination load has a capacitance based on an output of the comparator. The voltage applying unit lights on the determined illumination load with a rated driving voltage.
Abstract:
A lighting unit includes a power supply, a light source, a controller, and an output intensity adjustment mechanism. The adjustment mechanism is configured to allow a user to set an output intensity of a plurality of non-zero intensities generatable by the light source. The controller is operable to control a supply of electrical power from the power supply to the light source such that the light source illuminates in accordance with the intensity set by the user. The lighting unit is also operable to optionally report usage information for the lighting unit (e.g., cumulative on time) using the light source to produce a visually undetectable information signal. The controller is further optionally operable to adjust (e.g., increase) the electrical power supplied to the light source when the cumulative on time for the light source corresponds to a point on a lumen depreciation curve indicating a reduction in light source intensity.
Abstract:
A button assembly includes a button, an indicating lamp, a rheostat and a switch. The button includes a transparent pressing portion. The indicating lamp is positioned in the pressing portion. The rheostat includes a base and an adjuster rotatably attached to the base. The adjuster is rotated by rotation of the button. The switch is capable of being triggered by downwardly movement of the button.