Abstract:
A discharge lamp electrode, a discharge lamp for which the electrode is used, and a method for producing a discharge lamp electrode with increased productivity are disclosed. With the disclosed discharge lamp electrode, deformations in its end portion are suppressed, so that the electrode life is extended. For the discharge lamp electrode 106, tungsten wires are wound around an electrode rod 111 in the same turning direction and form a first-layer coil 112 and a second-layer coil 113. A tungsten wire forming the second-layer coil 113 is wound along a spiral valley between adjacent turns in the first-layer coil 112.
Abstract:
A method of forming emitter tips for use in a field emission array is disclosed. The tips are formed by utilizing a polymer residue that forms during the dry etch sharpening step to hold the mask caps in place on the emitter tips. The residue polymer continues to support the mask caps as the tips are over-etched, enabling the tips to be etched past sharp without losing their shape and sharpness. The dry etch utilizes an etchant comprised of fluorine and chlorine gases. The mask caps and residue polymer are easily removed after etching by washing the wafers in a wash of deionized water, or Buffered Oxide Etch.
Abstract:
A process for forming an etch mask having a discontinuous regular pattern utilizes beads, each of which has a substantially unetchable core covered by a removable spacer coating. Beads which have a core and a spacer coating are dispensed as a hexagonally-packed monolayer onto a thermo-adhesive layer, which is on a target layer. The beads are kept in place by a bead confinement wall. Following a vibrational step which facilitates hexagonal packing of the beads, the resultant assembly is heated so that the beads adhere to the adhesive layer. Excess beads are then discarded. Spacer shell material is then removed from each of the beads, leaving core etch masks. The core-masked target layer is then plasma etched to form a column of target material directly beneath each core. The cores and any spacer material underneath the cores are removed. The resulting circular island of target material may be used as an etch mask during wet isotropic etching of an underlying layer.
Abstract:
A method of forming emitter tips for use in a field emission array is disclosed. The tips are formed by utilizing a polymer residue that forms during the dry etch sharpening step to hold the mask caps in place on the emitter tips. The residue polymer continues to support the mask caps as the tips are over-etched, enabling the tips to be etched past sharp without losing their shape and sharpness. The dry etch utilizes an etchant comprised of fluorine and chlorine gases. The mask caps and residue polymer are easily removed after etching by washing the wafers in a wash of deionized water, or Buffered Oxide Etch.
Abstract:
A triode-type field emission device includes an insulating substrate; a cathode formed on the insulating substrate; a field emitter aligned on the cathode, wherein the field emitter includes a plurality of emitter tips and each emitter tip has the diameter of nanometers; an insulating layer positioned around the field emitter for electrically isolating the field emitter; and a gate electrode formed on the insulating layer, wherein the gate electrode is closed to an upper portion of the field emitter. Therefore, the triode-type field emission device may be operable in a low voltage.
Abstract:
A process for forming an etch mask having a discontinuous regular pattern utilizes beads, each of which has a substantially unetchable core covered by a removable spacer coating. Beads which have a core and a spacer coating are dispensed as a hexagonally-packed monolayer onto a thermo-adhesive layer, which is on a target layer. The beads are kept in place by a bead confinement wall. Following a vibrational step which facilitates hexagonal packing of the beads, the resultant assembly is heated so that the beads adhere to the adhesive layer. Excess beads are then discarded. Spacer shell material is then removed from each of the beads, leaving core etch masks. The core-masked target layer is then plasma etched to form a column of target material directly beneath each core. The cores and any spacer material underneath the cores are removed. The resulting circular island of target material may be used as an etch mask during wet isotropic etching of an underlying layer. Such a combination of plasma etching using the bead cores as a primary mask and a wet etch using the islands formed by the plasma etch as a secondary mask may be used to form micropoint cathode emitter tips in an underlying conductive or semiconductive layer.
Abstract:
A method for fabricating an electron emitter. This emitter structure may be used to form individual emitters or arrays of emitters. The method is comprised of implanting energetic ions into a diamond lattice to form cones or other continuous regions of damaged diamond. These regions are more electrically conducting than the surrounding diamond lattice, and have locally sharp tips at or near the point of entry of the ion into the diamond. The tips may then also be additionally coated with a layer of a wide band-gap semiconductor. An electrically conducting material may also be placed in proximity to the tips to generate an electric field sufficient to extract electrons from the conducting tips into either the region above the surface, or into the wide band-gap semiconductor layer in contact with the tips. Electrical contact is made to the electrically conducting damage tracks and the electrical circuit may be completed with an electrically conducting material on the surface of the wide band-gap semiconductor or diamond, or in the ambient above the surface of the emitter. The surface of the wideband gap semiconductor or diamond may be chemically modified to enhance the emission of electrons from the surface.
Abstract:
A filament comprises a generally thin metal component, such as a sheet, ribbon, or foil. The filament comprises at least one emitter, at least one current-condensing structure and a tab on each end of the at least one emitter. Each tab is connectable to a support system, comprising for example a lead and attachment post. When a current is passed through the filament, the current-condensing structure establishes current flow through the filament resulting in a desired temperature distribution across the emitter, for example a substantially uniform temperature distribution. A predictive tool for determining a geometry of a filament to provide a desired temperature distribution is set forth. The filament may be curved, and methods and systems for providing a curved filament are also provided. Attachment systems are further disclosed for attaching an emitter to a support structure.