Abstract:
A contact formed in accordance with a process for etching a insulating material to produce an opening having an aspect ratio of at least 15:1 by first exposing the insulating material to a second plasma of a second gaseous etchant comprising Ar, Xe, and combinations thereof to form an opening having an aspect ratio of less than 15:1. Secondly, the insulating material is exposed to a first plasma of a first gaseous etchant having at least fifty percent helium (He) to etch the opening having an aspect ratio of at least 15:1, thereby increasing the aspect ratio to greater than 15:1,where the first gaseous etchant has a lower molecular weight than the second gaseous etchant.
Abstract:
A process for etching a insulating layer to produce an opening having an aspect ratio of at least 15:1 by supplying a first gaseous etchant having at least fifty (50) percent He to a plasma etch reactor, and exposing the insulating layer to a plasma of the first gaseous etchant. Use of the first gaseous etchant reduces the occurrence of twisting in openings in insulating layers having an aspect ratio of at least 15:1.
Abstract:
Some embodiments include methods of recessing multiple materials to a common depth utilizing etchant comprising C4F6 and C4F8. The recessed materials may be within isolation regions, and the recessing may be utilized to form trenches for receiving gatelines. Some embodiments include structures having an island of semiconductor material laterally surrounded by electrically insulative material. Two gatelines extend across the insulative material and across the island of semiconductor material. One of the gatelines is recessed deeper into the electrically insulative material than the other.
Abstract translation:一些实施方案包括使用包含C 4 N 6 F 6和C 4 F 8的蚀刻剂将多种材料凹入共同深度的方法, SUB>。 凹陷的材料可以在隔离区域内,并且凹陷可以用于形成用于接收基准线的沟槽。 一些实施例包括具有由电绝缘材料横向包围的半导体材料岛的结构。 两种栅极延伸穿过绝缘材料和半导体材料岛。 电绝缘材料中的一种比另一种更凹陷。
Abstract:
A method of forming an extraction grid for field emitter tip structures is described. A conductive layer is deposited over an insulative layer formed over the field emitter tip structures. The conductive layer is milled using ion milling. Owing to topographical differences along an exposed surface of the conductive layer, ions strike the exposed surface at various angles of incidence. As etch rate from ion milling is dependent at least in part upon angle of incidence, a selectivity based on varying topography of the exposed surface (“topographic selectivity”) results in non-uniform removal of material thereof. In particular, portions of the conductive layer in near proximity to the field emitter tip structures are removed faster than portions of the conductive layer between emitter tip structures. Thus, portions of the insulative layer in near proximity to the field emitter tip structures may be exposed while leaving intervening portions of the conductive layer for forming the extraction grid. Accordingly, such formation of the extraction grid is self-aligned to its associated emitter tip structures.
Abstract:
Fin-FET (fin field effect transistor) devices and methods of fabrication are disclosed. The Fin-FET devices include dual fin structures that may form a channel region between a source region and a drain region. In some embodiments, the dual fin structures are formed by forming shallow trench isolation structures, using a pair of shallow trench isolation (STI) structures as a mask to define a recess in a portion of the substrate between the pair of STI structures, and recessing the STI structures so that the resulting dual fin structure protrudes from an active surface of the substrate. The dual fin structure may be used to form single-gate, double-gate or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.
Abstract:
Apparatus, systems and methods for plasma etching substrates are provided. The invention achieves dissipation of charge build-up on a substrate being plasma etched to avoid notching or twisting in high aspect ratio contents and similar features.Charge build-up on a substrate being etched by plasma etching can be dissipated by a method for etching a substrate, the method comprising: providing a plasma processing chamber comprising a chamber enclosure and a substrate support adapted to support a substrate within the chamber enclosure; supporting a substrate on the substrate support; forming a plasma within the chamber enclosure such that a surface of the substrate is in contact with the plasma; etching the substrate by generating a negative bias on the substrate surface relative to the plasma; and intermittently changing the bias on the substrate surface to positive relative to the plasma. The present method can be readily integrated into known plasma processing systems.
Abstract:
A carbon containing masking layer is patterned to include a plurality of container openings therein having minimum feature dimensions of less than or equal to 0.20 micron. The container openings respectively have at least three peripheral corner areas which are each rounded. The container forming layer is plasma etched through the masking layer openings. In one implementation, such plasma etching uses conditions effective to both a) etch the masking layer to modify shape of the masking layer openings by at least reducing degree of roundness of the at least three corners in the masking layer, and b) form container openings in the container forming layer of the modified shapes. Capacitors comprising container shapes are formed using the container openings in the container forming layer. Other implementations and aspects are disclosed.
Abstract:
A method of forming a pattern in a layer of material on a substrate, comprising providing a plurality of spheres, covering the layer on the substrate with the plurality of spheres to form a mask, reducing the diameter of at least one sphere of the plurality of spheres, etching the layer on the substrate using at least one sphere having a reduced diameter as a mask, and etching the substrate.
Abstract:
A method of forming emitter tips for use in a field emission array is disclosed. The tips are formed by utilizing a polymer residue that forms during the dry etch sharpening step to hold the mask caps in place on the emitter tips. The residue polymer continues to support the mask caps as the tips are over-etched, enabling the tips to be etched past sharp without losing their shape and sharpness. The dry etch utilizes an etchant comprised of fluorine and chlorine gasses. The mask caps and residue polymer are easily removed after etching by washing the wafers in a wash of deionized water, or Buffered Oxide Etch.
Abstract:
A method of forming emitter tips for use in a field emission array is disclosed. The tips are formed by utilizing a polymer residue that forms during the dry etch sharpening step to hold the mask caps in place on the emitter tips. The residue polymer continues to support the mask caps as the tips are over-etched, enabling the tips to be etched past sharp without losing their shape and sharpness. The dry etch utilizes an etchant comprised of fluorine and chlorine gases. The mask caps and residue polymer are easily removed after etching by washing the wafers in a wash of deionized water, or Buffered Oxide Etch.