Abstract:
An electronic control system configured to control a variable-configuration lay ramp of a pipeline laying vessel, to lay a pipeline on the bed of a body of water, is configured to: acquire data including data related to the configuration of the lay ramp, data related to the laying vessel, and data related to the forces transmitted by the lay ramp and the laying vessel to the pipeline; generate a plurality of step sequences to change the configuration of the lay ramp from a first to a second work configuration; and select a best step sequence as a function of the plurality of step sequences and the acquired data, so as to minimize the stress induced in the pipeline at each intermediate configuration between the first and second work configuration.
Abstract:
A stinger extends away from an end of a vessel, and a pipeline passes over the stinger as the pipeline is laid from the vessel. The inclination of the pipeline increases as the pipeline passes along the stinger and after leaving the stinger until the pipeline reaches an inflection point beyond the end of the stinger at which inclination is at a maximum. Inclination of the pipeline thereafter reduces until the pipeline touches down on the seabed. A method of S-laying the pipeline includes providing guides on the stinger that limit lateral movement of the pipeline relative to the stinger and moving the vessel and the stinger during S-laying to an orientation in which the longitudinal axis of the stinger is inclined to the path of the pipeline just laid. The vessel and the stinger are rotated about a vertical axis passing through or adjacent to the inflection point.
Abstract:
A field joint coating unit for coating a cutback area along a pipeline in which the apparatus includes an extruder having an extrusion outlet positioned adjacent and facing the cutback area so that a protective sheet can be extruded having a width that exceeds an axially extending width of the cutback area, and a mechanism supporting the extruder and its tank, the extrusion outlet, and a roller for compressing the protective sheet onto the cutback area in which the mechanism rotate the extruder, the tank, the extrusion outlet, and the roller about the pipeline as the protective sheet is extruded while maintaining the position of the extrusion outlet relative to the cutback area.
Abstract:
A method of abandoning a pipeline from an offshore vessel, wherein the method includes the steps of: providing a tubular member between a winch apparatus and the end of the pipeline being abandoned, the tubular member being received in a tensioning apparatus, and lowering the pipeline with the winch apparatus and the tensioning apparatus, the tensional load of the pipeline being held by the tensioning apparatus and the winch apparatus at the same time.
Abstract:
A fluidified inert material spreading device configured to bury a pipeline in a body of water is configured to travel in the body of water in a travelling direction along and over the pipeline, and has a hull, which extends along a longitudinal axis, houses at least one expansion chamber for fluidified inert material, is connected to at least one feed port to feed the fluidified inert material to the expansion chamber, and has a quantity or number of outlet ports configured to release the fluidified inert material from the expansion chamber, close to the pipeline, and which as a whole define a flow cross section greater than the flow cross section of the feed port.
Abstract:
A tubular reactor is described, for catalytic reactions involving thermal exchanges, in particular for etherification reactions between branched olefins and linear alcohol, for dimerization reactions of branched olefins or cracking reactions, essentially consisting of a vertical tube-bundle exchanger whose tubes contain catalyst, having inlet and outlet nozzles for each passage side of the reagents, catalyst and thermal exchange liquid, characterized in that it has one or more metallic supports situated outside the lower tube plate in the lower part of the reactor for sustaining the catalyst so that the same catalyst is contained not only in the tubes of the tube-bundle but also in said lower part outside the lower tube plate and also in the upper part outside the upper tube plate.
Abstract:
A vessel for laying a pipeline includes a plurality of ramps in the region of the first end of the vessel. The plurality of ramps includes a first ramp which is disposed along the pipelaying path, whose inclination is adjustable and which has a first upstream end and a second downstream end, and a second ramp which is disposed along the pipelaying path downstream of the first ramp, whose inclination is adjustable and which has a first upstream end and a second downstream end. The downstream end of the first ramp is positioned inboard of the first end of the vessel and above the bottom of the vessel and the upstream end of the second ramp is positioned inboard of the first end of the vessel and above the bottom of the vessel.
Abstract:
Two pipes are arranged end to end, the pipes being shaped such that a groove is defined between the ends of the pipe. A plurality of welding torches are used to weld in the groove, such that at least some of the welding torches perform a first welding pass, the welding characteristics of the torches are adjusted and at least some of the welding torches are used to perform a second welding pass. At least one torch welds in a first sector in the first welding pass and a second sector in the second welding pass, the second sector being different to the first. The sectors might overlap or might not overlap.
Abstract:
A method of securing a pipeline to the bed of a body of water includes moving an underwater vehicle selectively, on the bed of the body of water, along the pipeline; transporting a plurality of fastening devices on the underwater vehicle; and driving each fastening device partly into the bed of the body of water, close to the pipeline, by a handling device mounted on the underwater vehicle, to confine the pipeline between the bed of the body of water and the fastening device.
Abstract:
A process for the recovery of ammonia contained in a gaseous stream is described, said process comprising the following phases: (a) subjecting the gaseous stream containing ammonia to a washing (S) with an aqueous washing solution (5a) having a pH lower than 7.0, with the formation of a purified gaseous stream (6) and an aqueous solution (7) containing an ammonium salt; (b) subjecting the aqueous solution containing the ammonium salt coming from phase (a) to a distillation process (MD) with a hydrophobic microporous membrane at a temperature ranging from 50 to 250° C. and a pressure ranging from 50 KPa to 4 MPa absolute with the formation of a regenerated washing solution (16) and a gaseous stream (18) comprising NH3 and H2O; (c) recycling said generated washing solution to phase (a). The equipment for carrying out the above process is also described.