Abstract:
A heat exchanger includes an arrangement of refrigerant conveying heat exchange tubes and associated heat transfer fins and has an airflow inlet and an airflow outlet. A plurality of inlet guide vanes is disposed slightly upstream of the airflow inlet to the heat exchange tube arrangement so as to route incoming airflow through the heat exchange tube arrangement along a desired direction, in relation to the heat exchange tubes and associated fins, so as to improve drainage of accumulated condensate from the external surfaces of the heat exchange tubes and to enhance shedding of condensate from the surfaces of the heat transfer fins. Also, a plurality of outlet guide vanes can be disposed slightly downstream of the airflow outlet from the heat exchange tube arrangement.
Abstract:
A method and apparatus are presented to ensure adequate distribution of a two-phase refrigerant flowing through a plurality of heat transfer tubes of a parallel flow heat exchanger in a generally parallel manner. In several embodiments of this invention, predominantly single-phase refrigerant (liquid for condensers and vapor for evaporators) is tapped and delivered downstream to a location where a predominantly single-phase refrigerant phase is already present, bypassing at least some of the heat transfer tubes. In this manner, the remaining single-phase refrigerant (vapor for condensers and liquid for evaporators) flowing through the heat exchanger core is uniformly distributed amongst a plurality of heat transfer tubes in the next downstream pass.
Abstract:
In a method of operating a compressor at startup, the compressor is rotated in reverse for a brief period of time. The compressor is of a type that does not compress liquid when rotated in reverse. The purpose is to boil off the liquid refrigerant from the oil by heating and agitating the mixture of oil and refrigerant in the oil sump. This results in a much more benign forward start as less refrigerant is drawn into the compressor pump and the amount of oil pumped out of the compressor on start up is minimized. Also, the viscosity of oil is increased and lubrication of the bearings is improved. After a short period of time reverse rotation is stopped and the compressor can start rotating in the forward direction. The short period of time of reverse rotation is varied based upon system conditions. In one embodiment, the variation can occur by reducing the reverse run time as ambient temperature increases. In another embodiment, electrical conditions such as incoming voltage and/or a ratio of voltage to frequency can be utilized to change the reverse run time.
Abstract:
A refrigerant system utilizes an expander, where at least partially expanded refrigerant portion is tapped at the intermediate expansion point and passed through an economizer heat exchanger. In the economizer heat exchanger, the tapped refrigerant further cools refrigerant in a main liquid line. The present invention eliminates the need for a separate dedicated economizer circuit expansion throttling device, by utilizing a single expander to provide this expansion function. This invention also allows for the recovery of the expansion work, otherwise lost in the economizer expansion throttling device. System capacity and efficiency are improved by providing additional thermal potential for the refrigerant expanded (partially or fully) in the expander during more efficient isentropic process. In various embodiments, there may be more than a single economizer circuit, with each of said economizer circuits receiving the tapped refrigerant portions from the expander at different intermediate expansion points.
Abstract:
A refrigerant vapor compression system includes a compression device, a heat rejecting heat exchanger, an economizer heat exchanger, an expander and an evaporator disposed in a refrigerant circuit. An evaporator bypass line is provided for passing a portion of the refrigerant flow from the main refrigerant circuit after having traversed a first pass of the economizer heat exchanger through the expander to partially expand it to an intermediate pressure and thence through a second pass of the economizer heat exchanger and into an intermediate pressure stage of the compression device. An economizer bypass line is also provided for passing a portion of the refrigerant from the main refrigerant circuit after having traversed the heat rejecting heat exchanger through a restrictor type expansion device and thence into the evaporator bypass line as liquid refrigerant or a mix of liquid and vapor refrigerant for injection into an intermediate pressure stage of the compression device. Both economizer and injection flows are mixed together prior to entering an intermediate compression point, when an economizer circuit is active. The invention allows for enhanced system performance and advanced discharge temperature control.
Abstract:
A refrigerant system is provided with at least two stages of compression connected in series. An intercooler is positioned intermediate the two stages and is cooled by an indoor air stream. The intercooler is positioned to be in a path of air flow passing over an indoor heat exchanger, and preferably downstream of the indoor heat exchanger, in relation to this airflow. The intercooler cools the refrigerant flowing between the two compression stages as well as provides the reheat function. Benefits with regard to system performance (efficiency, capacity and reliability) are achieved with no additional circuitry or components required to provide the intercooler and reheat functions. This invention is particularly important for the CO2 refrigerant systems operating in the transcritical cycle. Methods of control are presented for both the intercooler and reheat functions.
Abstract:
A refrigerant system utilizes an expander that provides a more efficient expansion process and recovers at least a portion of energy from this expansion process. At least a portion of refrigerant that has been at least partially expanded in the expander is tapped and passed through an economizer heat exchanger. In the economizer heat exchanger, the tapped refrigerant cools a main circuit refrigerant increasing its thermodynamic potential. Further, a compression section is provided with at least two compressors operating in tandem and allowing for multiple stages of unloading. By selectively utilizing one or more of the tandem compressors, the economizer cycle, and the expander, the refrigerant system can achieve very efficient operation and provide enhanced control flexibility, in particular, for the CO2 refrigerant system operating in the transcritical cycle.
Abstract:
A refrigerant system, which utilizes CO2 as a refrigerant, includes a main closed-loop refrigerant circuit and a booster closed-loop refrigerant circuit. A heat accepting heat exchanger, which provides extra cooling for the refrigerant circulating through the main circuit, and thus improves refrigerant system performance, also serves as a shared component coupling the two circuits through heat transfer interaction. Various schematics and configurations for the booster circuit, which may be combined with other performance enhancement features, are disclosed. Additional benefits for economizer function, “liquid-to-suction” heat exchanger, intercooling and liquid injection are also presented. The booster circuit may also contain CO2 refrigerant.
Abstract:
A refrigerant system incorporates a variable capacity expander. A bypass line selectively bypasses at least a portion of the refrigerant approaching the expander to the intermediate expansion point within the expander. In this manner, the refrigerant expansion process is controlled more efficiently than in the prior art.
Abstract:
A heat exchange tube includes a tubular member having a flattened cross-section and extending along a longitudinal axis, and a longitudinally extending condensate drain channel formed in an upper wall of the flattened tubular member. A heat exchanger includes a first and a second spaced apart and generally vertical longitudinally extending headers, a plurality of heat exchange tubes disposed in parallel, spaced relationship in a generally vertical array and extending longitudinally between the first header and the second header, and a condensate drain extending longitudinally along, the upper wall of at least one of the plurality of flattened heat exchange tubes. The condensate drain may comprise a longitudinally extending condensate drain channel formed in an upper wall of said flattened tubular member, and/or a series of condensate drain portals formed in the heat transfer fins in a base portion bounding to the upper external surface of at least one heat exchange tube. The condensate drain portals of neighboring heat transfer fins are aligned longitudinally to provide a series of longitudinally aligned condensate drain portals along the upper external surfaces of the heat exchange tubes.