Abstract:
Circuitry, which includes a parallel amplifier and a switching supply, is disclosed. The parallel amplifier regulates a power supply output voltage based on a power supply control signal and provides a current sense signal, which is representative of a parallel amplifier output current from the parallel amplifier. The switching supply is coupled to the parallel amplifier. The switching supply provides a switching output voltage and makes an early determination of the switching output voltage using the current sense signal and the power supply control signal to at least partially compensate for delay in the switching supply. Additionally, the switching supply drives the parallel amplifier output current toward zero using the switching output voltage to increase efficiency.
Abstract:
A floating power converter includes direct current to direct current (DC-DC) converter circuitry having at least one converter control terminal for receiving at least one control signal, a high side (H-S) converter input terminal, a low side (L-S) converter input terminal, and a converter output terminal. The floating power converter also has an H-S source selector configured to selectively couple either a first H-S voltage source or a second H-S voltage source to the H-S converter input terminal in response to a selector control signal. Moreover, an L-S source selector is configured to selectively couple either a first L-S voltage source or a second L-S voltage source to the L-S converter input terminal in response to the selector control signal.
Abstract:
A transistor includes a sub-collector, a base, a collector between the sub-collector and the base, and an emitter on the base opposite the collector. The collector includes a first region adjacent to the base and a second region between the first region and the sub-collector. The first region has a graduated doping profile such that a doping concentration of the first region decreases in proportion to a distance from the base. The second region has a substantially constant doping profile. By providing the collector with a doping profile as described, the linearity of the transistor is significantly improved while maintaining the radio frequency (RF) gain thereof.
Abstract:
A transition frequency multiplier semiconductor device having a first source region, a second source region, and a common drain region is disclosed. A first channel region is located between the first source region and the common drain region, and a second channel region is located between the second source region and the common drain region. A first gate region is located within the first channel region to control current flow between the first source region and the common drain region, while a second gate region is located within the second channel region to control current flow between the second source region and the common drain region. An inactive channel region is located between the first channel region and the second channel region such that the first channel region is electrically isolated from the second channel region. A conductive interconnect couples the first source region to the second gate region.
Abstract:
An RF ladder filter having a parallel capacitance compensation circuit is disclosed. The parallel capacitance compensation circuit is made up of a first inductive element with a first T-terminal and a first end coupled to a first ladder terminal and a second inductive element with a second T-terminal that is coupled to the first T-terminal of the first inductive element and a second end coupled to a second ladder terminal. Further included is a compensating acoustic RF resonator (ARFR) having a fixed node terminal and a third T-terminal that is coupled to the first T-terminal of the first inductive element and the second T-terminal of the second inductive element, and a finite number of series-coupled ladder ARFRs, wherein the parallel capacitance compensation circuit is coupled across one of the finite number of series-coupled ARFRs by way of the first ladder terminal and the second ladder terminal.
Abstract:
A parallel amplifier and an offset capacitance voltage control loop are disclosed. The parallel amplifier has a parallel amplifier output, which is coupled to an envelope tracking power supply output via an offset capacitive element. The offset capacitive element has an offset capacitive voltage. The offset capacitance voltage control loop regulates the offset capacitive voltage, which is adjustable on a communications slot-to-communications slot basis.
Abstract:
A micro-electrical-mechanical system (MEMS) guided wave device includes a single crystal piezoelectric layer and at least one guided wave confinement structure configured to confine a laterally excited wave in the single crystal piezoelectric layer. A bonded interface is provided between the single crystal piezoelectric layer and at least one underlying layer. A multi-frequency device includes first and second groups of electrodes arranged on or in different thickness regions of a single crystal piezoelectric layer, with at least one guided wave confinement structure. Segments of a segmented piezoelectric layer and a segmented layer of electrodes are substantially registered in a device including at least one guided wave confinement structure.
Abstract:
A micro-electrical-mechanical system (MEMS) guided wave device includes a single crystal piezoelectric layer and at least one guided wave confinement structure configured to confine a laterally excited wave in the single crystal piezoelectric layer. A bonded interface is provided between the single crystal piezoelectric layer and at least one underlying layer. A multi-frequency device includes first and second groups of electrodes arranged on or in different thickness regions of a single crystal piezoelectric layer, with at least one guided wave confinement structure. Segments of a segmented piezoelectric layer and a segmented layer of electrodes are substantially registered in a device including at least one guided wave confinement structure.
Abstract:
A DC-DC converter, which provides a converter output voltage using a DC source voltage, is disclosed. The DC-DC converter includes converter control circuitry and a boosting charge pump. The converter control circuitry selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage. During the boost disabled mode, the boosting charge pump presents a high impedance at a charge pump output of the boosting charge pump. Otherwise, the boosting charge pump provides a charge pump output voltage. During the first boost operating mode, a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage. During the second boost operating mode, a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.
Abstract:
The present disclosure relates to envelope tracking with reduced circuit area and power consumption. In one embodiment, an envelope power converter includes a switching power converter configured to receive a supply voltage and provide an output based on a switching control signal. A holding inductor is coupled between the switching power converter and envelope power supply output node. An offset capacitor is coupled between the envelope power supply output node and control node. In response to a target envelope power supply output voltage, a control circuit is configured to generate the switching control signal and a control voltage to maintain envelope power supply signal at target voltage level. The control circuit is configured to generate switching control signal and control voltage such that supply voltage is provided by switching power converter to holding inductor and offset capacitor is charged to target level without changing voltage of envelope power supply signal.