Abstract:
A device for storing and dispensing a substance includes a container having a body defining therein a storage chamber for receiving and storing the substance. The container includes a head located at one end of the body and a first passageway that is in fluid communication with the storage chamber of the body and defines a flow path therebetween. The container also includes a pierceable wall located on an opposite side of the passageway relative to the storage chamber, and a first connecting portion for connecting another component thereto. The device also includes a one-way valve assembly that includes a valve body including a body base defining a second passageway and at least one piercing portion engageable with the pierceable wall of the container. The valve assembly includes a second connecting portion connectable to the first connecting portion of the container for fixedly securing the valve assembly to the container.
Abstract:
A sterile filling machine and related method are provided for sterile filling a container with a substance. The container includes a heat resealable stopper and a chamber for receiving the substance therein. The sealed, empty containers are subjected to radiation capable of penetrating through the stopper and chamber for sterilizing the container. The previously sterilized containers are then transported through another sterilizing chamber, such as an e-beam chamber, to sterilize the penetrable surface. A needle is moved into engagement with the stopper to pierce the sterilized penetrable surface of the stopper and inject the substance through the needle and into the chamber of the container. Laser energy is then transmitted onto the penetrated surface of the stopper to fuse the stopper material and hermetically re-seal the stopper.
Abstract:
A dispenser for holding multiple doses of fluids or other substances, and for dispensing the substances, has a vial, a flexible bladder received within the vial, and a variable volume storage chamber formed between the bladder and vial. A filling valve is coupled in fluid communication with the storage chamber and defines (1) a normally closed, fluid-tight position hermetically sealing the storage chamber from the ambient atmosphere, and (2) an open position allowing the passage of fluid through the valve both to evacuate the storage chamber and to introduce fluid through the valve to fill the storage chamber. A pump is coupled in fluid communication with the storage chamber for pumping fluids out of the storage chamber. A dispensing valve is coupled in fluid communication with the pump and defines (1) a normally closed, fluid-tight position preventing the passage of fluid out of the dispenser, and (2) an open position for dispensing pumped fluid therethrough. The sealed, empty dispenser is sterilized, such as by applying gamma radiation thereto. Then, the sterilized, sealed, empty dispenser is filled with fluid by engaging the filling valve with an evacuating/dispensing member to evacuate the storage chamber, and by introducing fluid from the filling member through the open filling valve and into the storage chamber. The filling member is withdrawn from the valve, and a spring moves the valve to a closed position to hermetically seal the fluid within the dispenser.
Abstract:
A device defining a chamber for receiving a substance and a thermoplastic portion in fluid communication with the chamber is provided along with a method of filling and sealing the substance within the chamber. The thermoplastic portion defines a penetrable region that is penetrable by a filling member and is heat resealable to hermetically seal an aperture therein by applying laser radiation at a predetermined wavelength and power. The thermoplastic portion comprises a thermoplastic body defining a predetermined wall thickness and includes a styrene block copolymer, an olefin and a predetermined amount of pigment allowing the body to absorb laser radiation at the predetermined wavelength, substantially prevent the passage of radiation through the predetermined wall thickness, and hermetically seal the aperture in the penetrable region in a predetermined time period. The body includes a predetermined amount of lubricant that reduces friction forces at an interface of the filling member and body during penetration thereof.
Abstract:
A syringe is provided for the delivery of controlled, metered amounts of any of numerous different substances to humans or animals, such as medicaments, pharmaceuticals, cosmetics, and food products, or to deliver materials which may react upon exposure to air, such as glue. The syringes include a body and a plunger. Means are provided in the syringe body and the plunger to effect controlled movement of the plunger into the syringe to permit delivery of a pre-determined amount of the substance contained in the syringe. A one-way valve is provided at the dispensing tip of the syringe to hermetically seal the portion of the syringe containing the substance to be dispensed.
Abstract:
A dispenser for dispensing a substance, such as a pharmaceutical, ophthalmic, dermatological, cosmeceutical, cosmetic or other product, has a body with a variable-volume storage chamber for storing the product. A dispensing portion of the dispenser is connected with the body and has a compression chamber in fluid communication with the storage chamber for receiving substance therefrom, and an outlet aperture coupled in fluid communication with the compression chamber. A one-way valve of the dispenser includes an axially-extending valve seat and an axially-extending flexible valve cover seated on the valve seat and defining a normally-closed, axially-extending seam therebetween forming a fluid-tight seal between the valve cover and valve seat. The flexible valve cover is movable relative to the valve seat and the seam is connectable in fluid communication with the outlet aperture to allow the passage of substance through the seam and out of the dispenser. The dispenser further comprises a manually-engageable actuator connected to the dispensing portion movable between first and second positions to dispense substance within the compression chamber through the outlet aperture, and an integral, dome-shaped spring for biasing the actuator in a direction from one of the first and second positions toward the other.
Abstract:
A stopper and container body are molded in the same molding machine. An assembly device, such as a pick and place robot, transfers the stopper from one mold cavity into the opening in the container body located within another mold cavity, or vice versa, to assemble the stopper and container body. Then, the assembled container body and stopper are removed from the molding machine and transported to a needle filling and laser resealing station for filling and laser resealing. A laminar flow source directs a substantially laminar flow of air or sterile gas over the mold surfaces, stoppers and container bodies, and assembly device, to prevent contamination during assembly.
Abstract:
A dispenser has a housing, and a variable-volume storage chamber formed within the housing and defining a substantially fluid-tight seal between the chamber and exterior of the housing for storing a substance to be dispensed. A piston is mounted within the housing, and a one-way valve is mounted within the housing and coupled in fluid communication with the variable-volume storage chamber. A compression chamber is coupled in fluid communication between the piston and one-way valve, and at least one of the piston and valve is manually depressible relative to the other between (i) a first position in which the piston is located at least partially outside of the compression chamber for permitting substance to flow from the variable-volume storage chamber into the compression chamber, and (ii) a second position in which the piston is located at least partially within the compression chamber for pressurizing substance within the compression chamber above a valve opening pressure and, in turn, dispensing substance through the one-way valve and out of the dispenser.
Abstract:
A device comprising a body including a first polymer and a closure including a second polymer that is substantially not bondable to the first polymer and has a relatively higher shrinkage rate than the first polymer, wherein at least a portion of the closure overlaps at least a portion of the body, forming a hermetic seal therebetween and defining a sealed, empty, sterile container.