Abstract:
A tank having a system for monitoring the structural conditions of the tank. The tank includes: an inner liner adapted to contain a gas thereinside and to prevent permeation of the gas therethrough; a shell surrounding the inner liner; and a plurality of diagnostic network patches (DNP) attached to the outside surface of the shell. Each DNP is able to operate as a transmitter patch or a sensor patch, where the transmitter patch is able to transmit a diagnostic signal and the sensor patch is able to receive the diagnostic signal. The diagnostic signal received by the DNP is analyzed to monitor the structural conditions of the tank.
Abstract:
Apparatus and methods for improving the safety and efficiency and decreasing the cost of producing liquid gas, such as liquid oxygen, with a small-scale use liquefaction device, according to various embodiments of the present invention. In one embodiment, liquid oxygen barrier may be added to interface between a cryocooler and a dewar to control rate of liquid oxygen escape upon a tipping of the dewar. A boiloff vessel in fluid communication with the dewar allows expanding gas from a tipped dewar to escape while allowing the liquid to safely settle in the boiloff vessel. A temperature sensing circuit, in proximity with a heat dissipator or cold finger of the cryocooler, is operable to break an electrical power circuit of the cryocooler or cooling fan when a sensed temperature exceeds a predetermined temperature. Oxygen purity of a feed stream of gas may be sensed and/or displayed.
Abstract:
A tank jacket fits over the outside of a storage tank. The jacket includes a hole for receiving the regulator assembly. The tank jacket supports a hose support assembly for storing the supply hose and a plurality of pockets for retaining various accessories and tools. A gauge protector fits over the regulator assembly and includes a first housing section defining a first cavity for receiving the regulator and a second housing section defining a second cavity for receiving the pressure gauge. A handle is formed on the gauge protector to facilitate carrying of the tank. The gauge protector and tank jacket protect the tank and regulator assembly and provide a system for transporting the tank and related equipment.
Abstract:
A cryogenic container includes an inner vessel for containing a cryogenic fluid, and an outer vessel for insulating the cryogenic fluid from the environment. The inner vessel includes a superconductive layer formed of a material having superconducting properties at the temperature of the cryogenic fluid. The superconductive layer forms a magnetic field around the cryogenic container, that repels electromagnetic energy, including thermal energy from the environment, keeping the cryogenic fluid at low temperatures. The cryogenic container has a portability and a volume that permits its' use in applications from handheld electronics to vehicles such as alternative fueled vehicles (AFVs). A SMES storage system includes the cryogenic container, and a SMES magnet suspended within the cryogenic fluid. The SMES storage system can also include a recharger and a cryocooler configured to recharge the cryogenic container with the cryogenic fluid.
Abstract:
A dry cryogenic shipping container having a removable absorbent assembly is provided. The dry cryogenic shipping container is structured to be a Dewar's flask having a first, outer shell assembly, and second, inner shell assembly disposed within and spaced from the first, outer shell assembly, and a cap. Within the shipping container is an absorbent assembly having a body with a central cavity. The absorbent assembly body is formed by a plurality of removable absorbent assembly elements. That is the absorbent assembly elements are sized to pass through the passage into the space within the shipping container. As such, after use, the absorbent assembly body elements may be removed and the remaining components may be sterilized. After sterilization, new absorbent assembly body elements are inserted into the inner space and the dry cryogenic shipping container is used again.
Abstract:
An embodiment of the invention comprises an apparatus or system for withdrawing a cryogenic liquid from a container wherein the liquid may be drawn from the container independent of the orientation of the container. The apparatus comprises a conduit having a flexible metallic hose portion and a metallic head. The flexible hose portion has a first end in fluid communication with an outlet portal of the container and a second end to which the head is attached.
Abstract:
A gas-tank holder for securing at least one element such as a cylindrical compressed gas tank to a support surface includes a frame securable to the support surface by suction cups, and at least one bracket slidably mounted in the frame. The bracket includes first and second bracket parts arranged to form together a receiving pocket. The bracket parts are movable toward and away from one another in order to adjust the size of the pocket. A locking mechanism for coupling the first and second arms together in their adjusted position is releasable while those arms are mounted in the frame. The suction cups are independently swingable relative to the frame to enable the suction cups to engage respective support surface sections that are non-co-planar.
Abstract:
A method and a device for protecting a vessel's loading space, the hold (1) of the vessel being provided with cargo pressure tanks (12), from excess pressure if a gas leakage should occur in the hold (1), the vessel being provided with a ventilating duct (8) which is separated in a gastight manner from the remaining rooms of the vessel and extends along the hold (1) of the vessel.
Abstract:
Apparatus and methods for improving the safety and efficiency and decreasing the cost of producing liquid gas, such as liquid oxygen, with a small-scale use liquefaction device, according to various embodiments of the present invention. In one embodiment, liquid oxygen barrier may be added to interface between a cryocooler and a dewar to control rate of liquid oxygen escape upon a tipping of the dewar. A boiloff vessel in fluid communication with the dewar allows expanding gas from a tipped dewar to escape while allowing the liquid to safely settle in the boiloff vessel. A temperature sensing circuit, in proximity with a heat dissipator or cold finger of the cryocooler, is operable to break an electrical power circuit of the cryocooler or cooling fan when a sensed temperature exceeds a predetermined temperature. Oxygen purity of a feed stream of gas may be sensed and/or displayed.
Abstract:
A surge prevention valve may be used to prevent the formation of an initial surge of high pressure. The valve may be located, for example, between a high pressure gas cylinder and a medical pressure regulator. The valve is provided with first and second valves located within a housing and integrating a pressurization orifice. The initial opening of the valve in an axial direction enables gas to flow through the pressurization orifice at a first flow rate. The full opening of the valve in the axial direction enables the gas to flow through the second valve at a second flow rate, which is much higher than the first flow rate. The controlled pressurization of the gas through the orifice delays the time during which the gas reaches full recompression. The valve may be further provided with a vent for venting pressurized gas away from a nominally closed top surface of the lower valve element. The valve may be also provided with a valve inlet tube extending into a gas cylinder to prevent contaminants, particles and/or impurities from entering the valve.