Abstract:
A DSP#B 6 executes, prior to data conversion, interpolation (see FIG. 2) in order to interpolate discrete spectra obtained via the FFT processing by a DSP#A 5. In the interpolation, the DSP#B 6 executes two-point interpolation if the difference between two discrete spectrum data pieces F(j) and F(j+1) is greater than a predetermined threshold &egr; and four-point interpolation if the difference is smaller than &egr;.
Abstract:
The data carrying signals to be synthesized into an image, to be subject to data compression can be subjected to Fourier transformation by the formation of a Fourier factor WN which is a function of a trigonometric factor &Dgr;C1 utilizing a factor II defined by the relationship: &Dgr;c1=cos x−1=−2 sin2 (x/2) where x=2&pgr;/N and N=number of data points.
Abstract translation:要被合成为要进行数据压缩的图像的信号的数据可以通过利用由以下关系定义的因子II形成作为三角因子ΔC1的函数的傅里叶因子WN进行傅里叶变换:其中 x = 2pi / N,N =数据点数。
Abstract:
A spectrometer for determining a spectrum of a light by using a mirror to reflect the light so that the light forms an intensity standing wave pattern through superposition of an incident portion of the light and a reflected portion of the light. The spectrometer is equipped with an intensity detector whose thickness is less than a shortest wavelength of the light being examined and which is semitransparent over the spectrum. The spectrometer has a mechanism to provide relative movement between the mirror and the intensity detector such that the intensity detector registers a variation of the intensity standing wave pattern. An analyzer, such as a Fourier transform analyzer, is employed to determine the spectrum of the light from that variation of the intensity standing wave pattern.
Abstract:
It is an object of the present invention to provide a method capable of acquiring data at a high speed while holding proper precision in measurement in an infrared imaging apparatus comprising an FTIR device of a continuous scan type for detecting a signal by a multi-element detector. A method of acquiring data from a multi-element detector in an infrared imaging apparatus comprising the steps of starting to scan a element of the said multi-element detector synchronously with a sampling signal (12) based on a reference signal (10) of an interferometer, scanning the element at a higher frequency than a sampling frequency of the sampling signal (12), completing the scanning of all the elements before a next sampling signal to the sampling signal starting the element scanning is generated, and repeating a series of operations every time the sampling signal is generated.
Abstract:
A method for compensating data age in measurement signals from an interferometer includes measuring a value of the measurement signal and adjusting the measured value based on the measurement signal with a data age adjustment value to correct for data age.
Abstract:
Focusing means to focus a beam upon a reflective-transmissive surface. Reflecting means to reflect a central portion of the beam from the reflective-transmissive surface. Transmitting means to transmit a portion of the beam that lies outside the central portion. Receiving means to receive the transmitted portion of the beam and combining means to combine the reflected central portion of the beam with a test beam to generate an interference pattern.
Abstract:
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Abstract:
A stage for an infrared spectroscope has a focusing body and a sampling element spaced apart by a mounting fixture. The focusing body and sampling element optically cooperate by transmission and internal refraction and reflection to focus an infrared beam on a sample surface and to collect the beam for analysis after it was reflected from the sample surface. The sampling element is made of a durable material and can be removably mounted in the fixture.
Abstract:
Methods of screening for a tumor or tumor progression to the metastatic state are provided. The screening methods are based on the characterization of DNA by principal components analysis of spectral data yielded by Fourier transform-infrared spectroscopy of DNA samples. The methods are applicable to a wide variety of DNA samples and cancer types.
Abstract:
A method and apparatus for an improved spectral imaging system is provided. The system is capable of measuring the fluorescence, luminescence, or absorption at selected locations on a sample plate. The emissions detection subassembly can tune to any wavelength within a continuum of wavelengths utilizing an interferometric spectral discriminator. The interferometric spectral discriminator creates an interferogram from which the wavelength spectra for each pixel of the array can be calculated, typically using Fourier transform analysis. In one aspect, the chromatic accuracy of the system is calibrated using a calibration slit placed in the input aperture of the input relay lens but outside of the sample image. The slit is illuminated using a source of known wavelength. The fringe count versus the wavelength of the slit illumination source is monitored and used to calibrate the spectral discriminator. In another aspect, a transparent optic is included in the interferometric spectral discriminator that can be inserted into the beam path whenever a monochrome image of the sample is required. The optic produces a large offset in the legs of the interferometer resulting in the fringe density becoming too large to resolve by the individual pixels of the detector array. In another aspect, the interferometric spectral discriminator includes a polarizing beam splitter. The polarizing beam splitter preferentially reflects one polarization while preferentially transmitting a second polarization, thus achieving improved efficiency while minimizing ghosting. In another aspect, a metaphase finder is used to locate areas of interest. The sample plate containing the material of interest is illuminated with light of a wavelength determined to preferentially scatter from objects the size of the metaphase spreads. The intensity of the scattered light versus the location on the sample plate is monitored and used to locate the areas of interest. Preferably the sample plate is also illuminated by light of a second wavelength which is not preferentially scattered by the objects of interest, thus representing the background scatter. By subtracting the background scatter from the primary scattered light, improved object discrimination is achieved.