Abstract:
A self-detection charge sharing module for a liquid crystal display device is disclosed. The self-detection charge sharing module includes at least one detecting unit, for detecting a plurality of input voltages of a plurality of operational amplifiers driving a plurality of data line sand a plurality of output voltage of the plurality of data line, to generate at least one detecting result, and at least one charge sharing unit, for conducting connection between at least one first data line and at least one second data line among the plurality of data line when the at least one detecting result indicates at least one corresponding first input voltage and at least one corresponding second input voltage among the plurality of input voltage have opposite voltage variation direction and vary toward each other. The at least one first input voltage and the at least one second input voltage maintain respective polarities.
Abstract:
A latch comparator device includes a differential input amplifier coupled between a first system voltage and a second system voltage and including a first differential output signal terminal and a second differential output signal terminal, a latch coupled to a third system voltage including a first latch signal terminal and a second latch signal terminal, a switch module including a first switch device and a second switch device, wherein the first switch device is coupled between the first differential output signal terminal and the second latch signal terminal and the second switch device is coupled between the second differential output signal terminal and the first latch signal terminal, and a third switch device is coupled between the latch and a fourth system voltage.
Abstract:
The present invention discloses a charging system for charging a capacitor. The charge system includes at least one unit gain buffer, driven by a plurality of driving voltages, each unit gain buffer having a positive input terminal for receiving a target voltage and a negative input terminal coupled to an output terminal, a plurality of switches coupled between the plurality of driving voltages and the capacitor, and a switch control waveform generator, coupled to the plurality of switches, for switching on one of the for a specific driving voltage among the plurality of driving voltages to drive one of the at least one unit gain buffer to charge the capacitor.
Abstract:
A data driver includes two data processing circuits for respectively providing positive and negative pixel voltages according to first and second pixel data, and a multiplexer circuit including multiplexer units. Each multiplexer unit has first and second input terminals respectively receiving the positive and negative pixel voltages, and an output terminal coupled to a data line. A first switching device has first and second switches serially coupled between the first input and output terminals. A node between the first and second switches is selectively grounded via a third switch. A second switching device has fourth and fifth switches serially coupled between the second input and output terminals. A node between the fourth and fifth switches is selectively grounded via a sixth switch. When the first and second switches turn on, the sixth switch turns on. When the fourth and fifth switches turn on, the third switch turns on.
Abstract:
A source driver includes a first drive channel circuit, a voltage controller and a first programmable voltage buffer unit. The first drive channel circuit receives a first pixel data from the timing controller via a data bus, converts the first pixel data to a first drive voltage according to a first reference voltage group, and drives a display panel by the first drive voltage. The voltage controller receives a voltage command from the timing controller, generates and changes a first reference voltage configuration data according to the voltage command. The first programmable voltage buffer unit is coupled to the voltage controller and the first drive channel circuit, and receives the first reference voltage configuration data to generate and adjust the first reference voltage group for applying to the first drive channel circuit. Furthermore, a method for updating a new gamma curve by the source driver is also provided.
Abstract:
A multiphase clock divider includes: a reference clock generator for generating a plurality of reference clocks; and at least one output clock generator including a first multiplexer for selecting to output a selected reference clock, a second multiplexer for selecting to output a first selected input clock, a third multiplexer for selecting to output a second selected input clock, a first flip-flop for outputting a first sampling clock according to the selected reference clock and the first selected input clock, a second flip-flop for outputting a second sampling clock according to the first sampling clock and the second selected input clock, and a fourth multiplexer for selecting to output the first sampling clock or the second sampling clock to generate an output clock.
Abstract:
A light-emitting diode (LED) driving circuit includes an LED control circuit and a power stage circuit. The LED control circuit shifts an input pulse width modulation (PWM) signal toward a higher frequency direction in a frequency domain to generate an output PWM signal having a duty cycle substantially the same as a duty cycle of the input PWM signal. The power stage circuit outputs an LED driving current according to the output PWM signal.
Abstract:
An image sensor and a column analog-to-digital converter thereof are provided. The column analog-to-digital converter includes a counter providing a counter result, a ramp signal generator providing a ramp signal and a start signal, a sampling and comparing array, a first latch array, a second latch array, and an arithmetic unit. The sampling and comparing array outputs a plurality of brightness transformation signals according to the ramp signal, the start signal, and initial voltages and brightness voltages of a plurality of photosensitive pixels. The first and the second latch arrays latch the counter result in response to the brightness transformation signals and output a plurality of first brightness latch values during a first period and a plurality of second brightness latch values during a second period. The arithmetic unit calculates the brightness values of the photosensitive pixels according to the first brightness latch values and the second brightness latch values.
Abstract:
A level shifting circuit with dynamic control includes a dynamic controller and a level shifter. The dynamic controller outputs a dynamic voltage and an output data signal. The level shifter under control by the dynamic controller includes an input signal receiver, an output signal generator, and a bias current controller, which are coupled in series between a ground voltage and a high level voltage. The input signal receiver receives the output data signal of the dynamic controller and the output signal generator produces a level-shifted data signal according to the input data signal. The bias current controller controlled by the dynamic voltage is at a first current-output capability when the level-shifted data signal is at a stable stage and at a second current-output capability when the level-shifted data signal is at an unstable stage. The first current-output capability is greater than the second current-output capability.
Abstract:
A clock data recovery circuit includes an equalizer, a multi-phase clock generator, a sampling and check unit, a signal edge detection unit and an adjusting unit. The equalizer performs an equalization on an incoming data signal. The multi-phase clock generator generates multiple clock signals and at least one pair of check signals. The sampling and check unit samples the incoming data signal according to the clock signals to obtain a sequence, and checks whether the sequence matches a predetermined pattern. If so, the signal edge detection unit controls the sampling and check unit to detect a transition between values of the sequence two on two based on the pair of check signals to obtain a detection value. The adjusting unit determines whether the transition is too early or too late according to the detection value, and adjusts the equalization on the incoming data signal according to the determination result.