Abstract:
The conversion into a progressive format of digital images organized in half-frames or fields with interlaced lines or rows envisages selecting successive lines in one or more of said fields and reconstructing by pixels an image line set between the interlaced lines selected. The reconstruction operation obtains the image by creating a set of candidate patterns associated to the work window by selecting the patterns to be considered within the window. Next, applying to the patterns of the aforesaid set a first cost function which is representative of the correlations between pairs of pixels. Applying to the patterns of the aforesaid set a second cost function which is representative of the non-correlations between pairs of pixels. Selecting, for each candidate pattern, respective internal correlations and external non-correlations, calculating corresponding scores for the candidate patterns using the aforesaid first cost function. Selecting a best pattern by comparing the respective scores of the candidate patterns with at least one threshold; and selecting the pixels of the window identified by the best pattern selected, then reconstructing the missing line by filtration starting from said pixels.
Abstract:
A method for error control in multilevel memory cells storing a configurable number of bits. The error control is performed using an error-control code which operates, in the encoding phase, on b-bit binary strings made up of k symbols of r-bit data. When the memory cells store a number r of bits, a data symbol is formed only with the data bits stored in a memory cell. When the memory cells store a number s of bits smaller than r, a data symbol is formed with the data bits stored in a memory cell and with r-s bits having a pre-determined logic value, in which the data bits stored in the memory cell are arranged in the least significant part of the data symbol, and the r-s bits having a pre-determined logic value are arranged in the most significant part of the data symbol.
Abstract:
A method for programming a nonvolatile memory cell envisages applying in succession, to the gate terminal of the memory cell, a first and a second programming pulse trains with pulse amplitude increasing in staircase fashion, in which the amplitude increment between one pulse and the next in the first programming pulse train is greater than the amplitude increment between one pulse and the next in the second programming pulse train. The programming method envisages applying, to the gate terminal of the memory cell and before the first programming pulse train, a third programming pulse train with pulse amplitude increasing in staircase fashion, in which the amplitude increment between one pulse and the next may be less than the amplitude increment in the first programming pulse train and substantially equal to the amplitude increment in the second programming pulse train, or else may be greater than the amplitude increment in the first programming pulse train.
Abstract:
Described herein is an asynchronous serial dichotomic sense amplifier comprising a first comparator stage having a first input receiving the cell current flowing in the multilevel memory cell, the content of which is to be read, a second input receiving a first reference current, and an output supplying the first of the bits stored in the multilevel memory cell; a multiplexer stage having a selection input connected to the output of the first comparator stage, a first signal input receiving a second reference current, a second signal input receiving a third reference current, and a signal output selectively connectable to the first or the second signal input depending on the logic level present on the selection input; and a second comparator stage having a first input receiving the cell current, a second input connected to the signal output of the multiplexer stage, and an output supplying the second of the bits stored in the multilevel memory cell.
Abstract:
In order to generate, starting from an input MPEG bitstream, an output MPEG bitstream having at least one entity chosen among syntax, resolution, and bitrate modified with respect to the input bitstream, first portions and second portions are distinguished in the input bitstream, which respectively substantially do not affect and do affect the variation in bitrate. When at least one between the syntax and the resolution is to be modified, the first portions of the input bitstream are subjected to the required translation, then transferring said first portions subjected to syntax and/or resolution translation to the output bitstream. When the resolution is left unaltered, the second portions are transferred from the input bitstream to the output bitstream in the substantial absence of processing operations. When the resolution is changed, the second portions of the input bitstream are subjected to a filtering in the domain of the discrete cosine transform.
Abstract:
A memory device implements a reading operation that comprises: providing first and second additional memory cells whose threshold voltage values correspond to a maximum value and a minimum value of a distribution of threshold voltages of a cell array of the memory device; programming the first and second additional memory cells with predetermined first and second logic values; simultaneously reading a logic contents of the first and second additional memory cells, and data to be read in the cell array; comparing the logic contents of the first and second additional memory cells, as read during the reading step, with the first and second predetermined logic values; generating a result signal of the comparison step, such a result signal having a first value in the event of the logic contents of the first and second additional memory cells, as read during the reading step, matching the first and second predetermined logic values, respectively, and having a second value in the event of the logic contents of the first and second additional memory cells, as read during the reading step, failing to match the first and second predetermined logic values, respectively.
Abstract:
Method for manufacturing an SOI wafer. On a monocrystalline silicon wafer, forming protective regions having the shape of an overturned U, made of an oxidation resistant material, the protective regions covering first wafer portions. Forming deep trenches in the wafer which extend between, and laterally delimit the first wafer portions, completely oxidizing the first wafer portions except their upper areas which are covered by the protective regions, to form at least one continuous region of covered oxide overlaid by the non-oxidized upper portions. Removing the protective regions, and epitaxially growing a crystalline semiconductor material layer from the non-oxidized upper portions.
Abstract:
A voltage regulator having a comparator with an output terminal that is the output of the regulator, terminals for connection to a voltage supply, a source of a reference voltage connected to an input terminal of the comparator, and a feedback circuit connected between the output terminal and the other input terminal of the comparator. To prevent transients upon the transition from the standby state to the active state, there is provided a second reference-voltage source that provides a reference voltage substantially equal to that of the first source, a switch for connecting the second source to the other input terminal of the comparator, and a control circuit that can activate the supply of the regulator and can close the switch for a predetermined period of time when the supply of the regulator is activated.
Abstract:
A semiconductor memory architecture having two memory banks each containing respective memory locations, and for each memory bank, respective circuits for selecting the locations of the bank and respective circuits for reading the data contained in the selected locations of the bank, a structure for the transfer of the data read by the reading circuits associated with the memory banks to data output terminals of the memory, there being a single data-transfer structure assigned selectively to one memory bank at a time and which includes storage for storing the most recent datum read by the reading circuits, and output driver circuits activated selectively in order to transfer the contents of the registers to the data output terminals of the memory, an addressing structure having, for each memory bank, and a respective circuit for the sequential scanning of the memory locations of the bank, operatively connected to the respective circuits for selecting the locations of the memory bank.
Abstract:
The device and method monitor the current delivered to a load through a power transistor including a sense transistor. The circuit includes a disturbances attenuating circuit that has a differential stage, and first, second and third stages referenced to ground, the respective input nodes of which are connected in common to an output node of the differential stage. The third stage is formed by a transistor identical to a transistor of the first stage and delivers a current signal through a current terminal thereof, proportional to the current being delivered to the load.