Abstract:
A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
Abstract:
A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
Abstract:
A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
Abstract:
Various embodiments of the present invention relate to a method for operating an additive manufacturing apparatus in which a three-dimensional article is formed. Said method comprising the steps of: providing a vacuum chamber having at least a first and a second section, wherein said first and second sections are openly connected to each other, providing a predetermined vacuum level inside said vacuum chamber, providing a layer of powder material on a work table in said first section of said vacuum chamber, directing an electron beam from said at least one electron beam source provided in said second section over said work table to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article, purging said second section with a dry gas when said vacuum chamber is open for prohibiting ambient air into said second section.
Abstract:
A method for forming a three-dimensional article comprising the steps of: applying a model of the three dimensional article, applying a first powder layer on a work table, directing a first electron beam from a first electron beam source over the work table causing the first powder layer to fuse in first selected locations according to the model to form a first cross section of the three-dimensional article, directing a second electron beam from a second electron beam source over the work table, registering at least one setting of the first electron beam source, registering at least one setting of the second electron beam source, correcting the position of the second electron beam depending on the at least one setting of the first electron beam source and the at least one setting of the second electron beam source.
Abstract:
A method for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, said method comprising the steps of: providing a model of said three dimensional article, providing a first powder layer on a work table, directing a first energy beam from a first energy beam source over said work table causing said first powder layer to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article, directing a second energy beam from a second energy beam source over said work table causing said first powder layer to fuse in second selected locations according to said model to form the first cross section of said three-dimensional article, wherein said first and second locations of said first powder layer are at least partially overlapping each other.
Abstract:
A method for providing safety protection in an additive manufacturing apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed in an enclosable chamber, which parts corresponds to successive cross sections of the three-dimensional article is provided. The method comprising the steps of providing a position detecting device connected to a control unit to detect whether a foreign matter is within the enclosable chamber. The method may also include, upon detecting that the foreign matter is within the enclosable chamber, either (1) switching off, via the control unit, at least one device associated with the additive manufacturing apparatus; or (2) providing power to a powder suction device. Associated safety protection devices are also provided.
Abstract:
An apparatus for forming a three-dimensional article through successively depositing individual layers of powder material that are fused together with an electron beam from an electron beam source so as to form the article according to a computer model thereof. The apparatus includes a chamber a chamber having a first section and a second section openly connected to each other. The first section is configured to receive the individual layers of powder material. The second section comprising an electron beam source, an electromagnetic focus coil having an axially extending, and a reflector coil. The electron beam source is configured to emit an electron beam to fuse the individual layers of powder material. The reflector coil is arranged radially outside the electromagnetic focus coil. The direction of windings of the reflector coil is opposite a direction of windings of the electromagnetic focus coil.
Abstract:
A blast nozzle for a depowdering apparatus includes an abrasive material inlet fluidly connected to an abrasive material outlet and a fluid inlet fluidly connected to a fluid outlet, where the fluid outlet at least partially surrounds the abrasive material outlet. The fluid outlet is angled with respect to the abrasive material outlet and configured to emit a fluid stream directed to a focal point, the focal point being laterally spaced apart from the blast nozzle in a fluid flow direction.
Abstract:
An apparatus for forming at least one three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the apparatus comprising: a powder distributor configured for evenly distributing a layer of powder on top of a work table provided inside a build chamber; and at least one high energy beam source emanating at least one high energy beam configured for fusing the powder layer in selected locations corresponding to the cross section of the three-dimensional article, wherein the apparatus further comprising at least one target area arranged spaced apart from the layer of powder for emanating light when irradiated by the at least one high energy beam.