Abstract:
A method for cleaning debris and contamination from an etching apparatus is provided. The etching apparatus includes a process chamber, a source of radio frequency power, an electrostatic chuck within the process chamber, a chuck electrode, and a source of DC power connected to the chuck electrode. The method of cleaning includes placing a substrate on a surface of the electrostatic chuck, applying a plasma to the substrate, thereby creating a positively charged surface on the surface of the substrate, applying a negative voltage or a radio frequency pulse to the electrode chuck, thereby making debris particles and/or contaminants from the surface of the electrostatic chuck negatively charged and causing them to attach to the positively charged surface of the substrate, and removing the substrate from the etching apparatus thereby removing the debris particles and/or contaminants from the etching apparatus.
Abstract:
A method for cleaning debris and contamination from an etching apparatus is provided. The etching apparatus includes a process chamber, a source of radio frequency power, an electrostatic chuck within the process chamber, a chuck electrode, and a source of DC power connected to the chuck electrode. The method of cleaning includes placing a substrate on a surface of the electrostatic chuck, applying a plasma to the substrate, thereby creating a positively charged surface on the surface of the substrate, applying a negative voltage or a radio frequency pulse to the electrode chuck, thereby making debris particles and/or contaminants from the surface of the electrostatic chuck negatively charged and causing them to attach to the positively charged surface of the substrate, and removing the substrate from the etching apparatus thereby removing the debris particles and/or contaminants from the etching apparatus.
Abstract:
The present disclosure provides a substrate processing method including: a preparation process of placing a target substrate on a stage within a processing container; a first heating process of supplying a first gas into the processing container and heating the target substrate with a heater; a second heating process of stopping the supply of the first gas, supplying a second gas different from the first gas, and heating the target substrate with the heater; and a processing process of processing the target substrate by supplying the second gas and a third gas.
Abstract:
The present invention relates to a method for etching lithium niobate, the method including a process of etching lithium niobate using a mask pattern as a physical dry etching method using Ar plasma produced in a chamber through Ar gas, wherein in the process of etching lithium niobate, a process pressure of the chamber is maintained at 1 mTorr to 20 mTorr, and a method for forming a lithium niobate pattern using the same.
Abstract:
Improved is the reliability of sample analysis performed using a charged particle beam apparatus. The charged particle beam apparatus includes region setting means for setting an irradiation region for irradiating a sample with an electron beam and an irradiation prohibited region for prohibiting the irradiation of the sample with the electron beam using a low-magnification image of the sample captured under low vacuum. In addition, the charged particle beam apparatus includes captured image acquisition means for selectively irradiating the irradiation region with the electron beam with the inside of a sample chamber under high-vacuum and acquiring a high-vacuum SEM image of the irradiation region based on the secondary or backscattered electrons emitted from the irradiation region.
Abstract:
An x-ray analysis apparatus comprises an electron beam assembly for generating a focused electron beam within a first gas pressure environment. A sample assembly is used for retaining a sample within a second gas pressure environment such that the sample receives the electron beam from the electron beam assembly and such that the gas pressure in the second gas pressure environment is greater than the gas pressure within the first gas pressure environment. An x-ray detector is positioned so as to have at least one x-ray sensor element within the first gas pressure environment. The sensor element is mounted to a part of the electron beam assembly which is proximal to the sample assembly and further arranged in use to receive x-rays generated by the interaction between the electron beam and the sample.
Abstract:
A mass spectrometer system can include an ion source, a vacuum chamber; a mass analyzer within the vacuum chamber, a transfer tube between the ion source and the vacuum chamber, a transfer tube heater, and a vacuum pump. The mass spectrometer system can be configured to reduce the pump speed of the vacuum pump in response to receiving a transfer tube swap instruction; lower the temperature of the transfer tube to below a first threshold; operating the vacuum pump at the reduced pump speed while the transfer tube is replaced with a second transfer tube; heating the second transfer tube to a temperature above a pump down temperature; and increasing the pump speed of the vacuum pump after the temperature of the second transfer tube exceeds a second threshold.
Abstract:
The present disclosure provides a charged particle source arrangement for a charged particle beam device. The charged particle source arrangement includes: a first vacuum region and a second vacuum region; a charged particle source in the first vacuum region wherein the charged particle source is configured to generate a primary charged particle beam; and a membrane configured to provide a gas barrier between the first vacuum region and the second vacuum region, and wherein the membrane is configured to let at least a portion of the primary charged particle beam pass through the membrane, wherein a first vacuum generation device is connectable to the first vacuum region and a second vacuum generation device is connectable to the second vacuum region.
Abstract:
An x-ray analysis apparatus comprises an electron beam assembly for generating a focused electron beam within a first gas pressure environment. A sample assembly is used for retaining a sample within a second gas pressure environment such that the sample receives the electron beam from the electron beam assembly and such that the gas pressure in the second gas pressure environment is greater than the gas pressure within the first gas pressure environment. An x-ray detector is positioned so as to have at least one x-ray sensor element within the first gas pressure environment. The sensor element is mounted to a part of the electron beam assembly which is proximal to the sample assembly and further arranged in use to receive x-rays generated by the interaction between the electron beam and the sample.
Abstract:
In conventional structures, a space between a dual cooling tank is vacuum insulated, and a cooling part is cooled via a highly thermally conductive material connected to an inner container. Such structures are affected by heat infiltrating into the highly thermally conductive material and the cooling part. For instance, in cases when liquid nitrogen is used as a coolant, it takes approximately 30 minutes for the temperature to reach −120° C. Even in cases when a significant amount of time has been spent, the temperature only reaches approximately −150° C., and thus falls significantly short of the temperature of liquid nitrogen, namely −196° C. Accordingly, an anti-contamination trap and a vacuum application device according to the present invention are provided with a structure in which a device-internal cooling part in the vacuum application device is cooled, and are characterized by being provided with: a cooling tank filled with a coolant for cooling a cooling part; and a cooling pipe extending from the cooling tank to the vicinity of the cooling part. The anti-contamination trap and the vacuum application device are further characterized in that: the coolant is supplied to an end of the cooling part; and a tube for releasing air bubbles inside the cooling pipe is inserted so as to extend to the cooling part.