Abstract:
A system for implementing a non-volatile input/output (I/O) device based memory can include an interface configured to receive a processor request specifying a data unit. The data unit can be specified by a processor address. The system can include an address-data converter coupled to the interface. The address-data converter can be configured to correlate the processor address of the data unit to a data block within the non-volatile I/O device. The system further can include an I/O controller coupled to the address-data converter. The I/O controller can be configured to issue a non-volatile I/O device command specifying the data block to the non-volatile I/O device.
Abstract:
A hardwired core is embedded in an integrated circuit having programmable circuitry. The hardwired core has a microprocessor; a crossbar interconnect coupled to processor local buses of the microprocessor; and a memory controller interface coupled to the crossbar interconnect. The crossbar interconnect provides pipelines for coupling the hardwired core to the programmable circuitry. The microprocessor, the crossbar interconnect, and the memory controller interface are all capable of operating at a first frequency of operation, and the memory controller interface is further capable of being set to operate at a second frequency of operation having an integer ratio with respect to the first frequency of operation. The crossbar interconnect is configured to direct transactions initiated by the microprocessor to the memory controller interface for accessing one or more memory devices coupled to the memory controller interface via a memory controller. Additional or other interfaces may be coupled to the crossbar interconnect.
Abstract:
A method for decoding, including: obtaining an op-code from a master device; setting a mode to mask a first portion of the bits of the op-code, where the first portion of the bits are for being treated as a wildcard value; and decoding a second portion of the op-code that is not masked to determine whether the op-code is for a slave device. The decoding of the second portion is performed by a controller having a decoder, and the controller bridges the master device for communication with the slave device. The decoding of the first portion of the bits is performed by the slave device. The first portion of the bits identifies an instruction from a group of instructions, and the group of instructions uses a single configuration register of registers of the controller.
Abstract:
A system is disclosed comprising a logic circuit in an integrated circuit device, wherein the logic circuit comprises a logic fabric that includes a plurality of configurable logic blocks, switching blocks, and input/output blocks, wherein the logic fabric is configured according to configuration data provided to the integrated circuit device from an external memory and at least a portion of the logic fabric is configured as a configured processor to perform a first fixed logic function according to the configuration data. A fixed logic processor, a first auxiliary processing interface, a second fixed logic processor, a second auxiliary processing interface enable communication with the configured processor, wherein the configured processor remains configured to enable both the fixed logic processor and the second fixed logic processor to access the configured processor to perform the fixed logic function.
Abstract:
Method and apparatus for synchronizing access to a memory shared among a plurality of processors is described. In one example, each of the plurality of processors includes a primary bus for communicating with the memory and a secondary bus. A synchronization block is coupled to the secondary bus of each of the plurality of processors. The synchronization block includes at least one semaphore for controlling access among the plurality of processors to at least one data segment stored within the memory.
Abstract:
A compiler and vector data transfer instructions for use in a vector transfer unit for handling transfers of vector data between a memory and a data processor in a computer system. The compiler identifies the use of vector data in an application program and implements one or more vector instructions for transferring the vector data between memory and registers used to perform calculations on the vector data. A vector is partitioned by the compiler into variable-sized streams which are transferred into and out of the processor as burst transactions. The compiler schedules transfers of vector streams required in a calculation so that calculations on a portion of the vector data are performed while a subsequent portion of the vector data is transferred. A vector buffer pool is partitioned into one or more vector buffers and each vector buffer is used at a specific time. The compiler partitions a vector buffer into the variable-sized streams depending on the number of vectors buffers required by an application program and the size required for each stream. Each vector buffer is allocated for exclusive use by an application program that is executing in the data processor. A synchronization instruction is used to allow all VTU instructions issued prior to the synchronization instruction to finish before any VTU instructions issued after the synchronization instruction may begin. Instructions for controlling access to the vector buffer pool are also included.
Abstract:
A vector transfer unit for handling transfers of vector data between a memory and a data processor in a computer system. Vector data transfer instructions are posted to an instruction queue in the vector transfer unit. Program instructions for performing a burst transfer include determining the starting address of the vector data to be transferred, the ending address of the vector data to be transferred, and whether the ending address of the vector data to be transferred is within the same virtual memory page as the starting address. The ending address of the vector data to be transferred is determined based on the number of data elements to be transferred, the stride of the vector data to be transferred, and the width of the vector data elements to be transferred. When the amount of data to be transferred is divisible by a factor of two, the multiplication of the stride and width of the data elements is carried out by shifting. An address error exception occurs when the ending address of the vector data to be transferred is not within the same virtual memory page as the starting address. The ending address of the vector data to be transferred is determined in parallel with determining the starting address of the vector data to be transferred.
Abstract:
A vector transfer unit for handling transfers of vector data between a memory and a data processor in a computer system. Vector instructions are used for transferring the vector data between memory and registers used to perform calculations on the vector data. The transfers of portions of the vector data required in a calculation are scheduled so that calculations on a portion of the vector data are performed while a subsequent portion of the vector data is transferred. A vector buffer pool is partitioned into one or more vector buffers based on configuration information including the number of vectors buffers required by an application program and the size required for each vector buffer. The vector buffers are allocated for exclusive use by an application program that is executing in the data processor. Vector data transfer instructions are posted in a vector transfer instruction queue and are executed in the order they are posted to the instruction queue. A synchronization instruction is used to block the execution of vector transfer instructions that are posted in the instruction queue after the synchronization instruction.