摘要:
An ink jet recording method includes forming a glittering image on a recording medium by ejecting a glittering ink containing silver onto the recording medium by an ink jet method, applying a protective ink containing a resin and substantially no coloring material onto the glittering image, and forming a color image by ejecting a color ink containing a coloring material to the glittering image by an ink jet method. The protective ink is applied between the glittering image and the color image.
摘要:
An ink jet recording method according to an aspect of the invention includes: discharging droplets of a glitter ink composition containing a glitter pigment onto a recording medium to form a glitter region on the recording medium; and discharging a colored ink composition containing a colorant onto the glitter region to form a colored glitter region on the recording medium, wherein when light is irradiated on the colored glitter region at an angle of 45 degrees, with a normal direction with respect to the colored glitter region as 0 degrees, the ratio [(C*45°)/(C*0°)] between the saturation of the colored glitter region measured based on light reflected at an angle of −45 degrees (C*45°) and the saturation of the colored glitter region measured based on light reflected at an angle of 0 degrees (C*0°) is equal to or greater than 1.
摘要:
A method for manufacturing a solar cell including a substrate, a first electrode layer, a semiconductor layer, and a second electrode layer, includes forming a first sacrificial layer on a portion of a surface of the substrate; forming the first electrode layer on the substrate and on the first sacrificial layer; and dividing the first electrode layer by removing the first sacrificial layer and a portion of the first electrode layer formed on the first sacrificial layer.
摘要:
A solar cell includes a plurality of unit cells connected in series and a first partition portion. Each of the unit cells includes a substrate, a first electrode layer formed on the substrate, a semiconductor layer formed on the first electrode layer, and a second electrode layer formed on the semiconductor layer. The first partition portion has insulation properties and partitions the first electrode layers of the unit cells on the substrate with each the first electrode layers being disposed respectively in a region partitioned by the first partition portion.
摘要:
A solar cell includes a substrate, a first electrode layer formed on the substrate, a semiconductor layer formed on the first electrode layer, a second electrode layer formed on the semiconductor layer, and a conductive contact layer formed in a groove portion extending from the first electrode layer to the second electrode layer in a portion of the semiconductor layer.
摘要:
A method for forming a pixel electrode on a substrate, including: forming a bank corresponding to a region for forming the pixel electrode on a substrate; disposing, by a liquid ejection method, a first functional liquid containing transparent conductive microparticles in the region partitioned by the bank; drying the first functional liquid to produce a first layer film; disposing, by a liquid ejection method, a second functional liquid containing a silicon compound onto the first layer film; and forming a pixel electrode made of a laminate that includes: a transparent conductive layer which is formed by calcining together the first layer film and the second functional liquid and is composed of the first layer film and silicon oxide filling a pore in the first layer film; and a silicon oxide layer formed on the transparent conductive layer.
摘要:
A method of forming a conductive film includes disposing liquid material containing particulate materials on a substrate, and baking the liquid material on the substrate through light-irradiation using a flash lamp so as to form a conductive film.
摘要:
Certain embodiments provide a plasma etching apparatus and a method for detecting the end point of plasma etching, which can more accurately detect the end point of plasma etching. A radiofrequency wave generated in a radiofrequency generating system 5 propagates through a lead line 30 and is applied to a cathode 9 in a plasma chamber 1. Plasma 11 thereby is generated in the plasma chamber and selectively etches a semiconductor wafer 12. A RF probe 8 measures the voltage and current of the radiofrequency wave flowing in the lead line 30. A determination system 15 may determine the end point of the plasma etching on the basis of either the voltage or current, whichever changes first.