摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
An optical system of a microlithographic exposure apparatus comprises at least one optical element (L1 to L16, 15, 16, 24) having a locally varying birefringence direction distribution that is caused by stress-induced birefringence and is at least substantially rotationally symmetrical. At least one birefringent correcting element (K1, K2; K′) is made of a crystal having a location independent birefringence direction distribution that is at least substantially rotationally symmetrical. The crystal has a crystal lattice orientation that is oriented such that its birefringence direction distribution is at least substantially perpendicular to the locally varying birefringence direction distribution of the at least one optical element (L1 to L16, 15, 16, 24).
摘要:
An optical system of a microlithographic exposure apparatus comprises at least one optical element (L1 to L16, 15, 16, 24) having a locally varying birefringence direction distribution that is caused by stress-induced birefringence and is at least substantially rotationally symmetrical. At least one birefringent correcting element (K1, K2; K′) is made of a crystal having a location independent birefringence direction distribution that is at least substantially rotationally symmetrical. The crystal has a crystal lattice orientation that is oriented such that its birefringence direction distribution is at least substantially perpendicular to the locally varying birefringence direction distribution of the at least one optical element (L1 to L16, 15, 16, 24).
摘要:
Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the crystallographic direction but also in the crystallographic direction or in the crystallographic direction. A further reduction in the detrimental influence of birefringence is achieved by the simultaneous use of groups with (100)-lenses rotated with respect to one another and groups with (111)-lenses or (110)-lenses rotated with respect to one another. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
摘要:
An objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens is disclosed. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
The invention concerns an optical element, in particular for an objective or an illumination system of a microlithographic projection exposure apparatus, including a substrate which for light of a predetermined working wavelength which passes through the substrate causes a first retardation between mutually perpendicular polarization states, and a layer which is epitaxially grown on the substrate and which is made from a material with non-cubic crystal structure, which by virtue of natural birefringence causes a second retardation between mutually perpendicular polarization states, which at least partially compensates for the first retardation caused in the substrate.
摘要:
Objective (1, 601), in particular a projection objective for a microlithography projection apparatus, with first birefringent lenses (L108, L109, L129, L130) and with second birefringent lenses (L101-L107, L110-L128). The first lenses (L108, L109, L129, L130) are distinguished from the second lenses (L101-L107, L110-L128) by the lens material used or by the material orientation. After passing through the first lenses (L108, L109, L129, L130) and the second lenses (L101-L107, L110-L128), an outer aperture ray (5, 7) and a principal ray (9) are subject to optical path differences for two mutually orthogonal states of polarization. The difference between these optical path differences is smaller than 25% of the working wavelength. In at least one first lens (L129, L130), the aperture angle of the outer aperture ray (5, 7) is at least 70% of the largest aperture angle occurring for said aperture ray in all of the first lenses (L108, L109, L129, L130) and second lenses (L101-L107, L110-L128). This arrangement has the result that the first lenses (L108, L109, L129, L130) have a combined material volume of no more than 20% of the combined total material volume of the first lenses (L108, L109, L129, L130) and second lenses (L101-L107, L110-L128).
摘要:
A lithography projection objective for imaging a pattern to be arranged in an object plane of the projection objective onto a substrate to be arranged in an image plane of the projection objective comprises a multiplicity of optical elements that are arranged along an optical axis of the projection objective. The optical elements comprise a first group, following the object plane, of optical elements, and a last optical element, which follows the first group and is next to the image plane and which defines an exit surface of the projection objective and is arranged at a working distance from the image plane. The projection objective is tunable or tuned with respect to aberrations for the case that the volume between the last optical element and the image plane is filled by an immersion medium with a refractive index substantially greater than 1. The position of the last optical element is adjustable in the direction of the optical axis. A positioning device is provided that positions at least the last optical element during immersion operation such that aberrations induced by disturbance are at least partially compensated.